Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1175-1188
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTvrdá, Katarína, and Novotný, Peter. "Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives." Czechoslovak Mathematical Journal 73.4 (2023): 1175-1188. <http://eudml.org/doc/299534>.
@article{Tvrdá2023,
abstract = {Standard algorithms for numerical integration are defined for simple integrals. Formulas for computation of repeated integrals and derivatives for equidistant domain partition based on modified Newton-Cotes formulas are derived. We compare usage of the new formulas with the classical quadrature formulas and discuss possible application of the results to solving higher order differential equations.},
author = {Tvrdá, Katarína, Novotný, Peter},
journal = {Czechoslovak Mathematical Journal},
keywords = {repeated integral; Cauchy formula for repeated integration; quadrature; cubature; numerical differentiation},
language = {eng},
number = {4},
pages = {1175-1188},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives},
url = {http://eudml.org/doc/299534},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Tvrdá, Katarína
AU - Novotný, Peter
TI - Modifications of Newton-Cotes formulas for computation of repeated integrals and derivatives
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1175
EP - 1188
AB - Standard algorithms for numerical integration are defined for simple integrals. Formulas for computation of repeated integrals and derivatives for equidistant domain partition based on modified Newton-Cotes formulas are derived. We compare usage of the new formulas with the classical quadrature formulas and discuss possible application of the results to solving higher order differential equations.
LA - eng
KW - repeated integral; Cauchy formula for repeated integration; quadrature; cubature; numerical differentiation
UR - http://eudml.org/doc/299534
ER -
References
top- Abramowitz, M., (eds.), I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, U.S. Department of Commerce, Washington (1964). (1964) Zbl0171.38503MR0167642
- Bauchau, O. A., Craig, J. I., 10.1007/978-90-481-2516-6_5, Structural Analysis Solid Mechanics and Its Applications 163. Springer, Dordrecht (2009), 173-221. (2009) DOI10.1007/978-90-481-2516-6_5
- Burden, R. L., Faires, J. D., Numerical Analysis, PWS Publishing Company, Boston (1993). (1993) Zbl0788.65001
- Folland, G. B., Advanced Calculus, Prentice Hall, Hoboken (2001). (2001)
- Holoborodko, P., Stable Newton-Cotes Formulas, Available at http://www.holoborodko.com/pavel/numerical-methods/numerical-integration/stable-newton-cotes-formulas/.
- Janečka, A., Průša, V., Rajagopal, K. R., Euler-Bernoulli type beam theory for elastic bodies with nonlinear response in the small strain range, Arch. Mech. 68 (2016), 3-25. (2016) Zbl1338.74073MR3497874
- Selvam, V. K. M., Bindhu, K. R., Application of double integration method and the Maxwell-Betti theorem for finding deflection in determinate flexural frames: A supplement note, J. Struct. Eng. 41 (2014), 420-431. (2014)
- Tvrdá, K., 10.1051/matecconf/202031300008, MATEC Web Conf. 313 (2020), 6 pages. (2020) DOI10.1051/matecconf/202031300008
- Tvrdá, K., Minárová, M., 10.2478/tmmp-2018-0026, Tatra Mt. Math. Publ. 72 (2018), 141-154. (2018) Zbl07031665MR3939444DOI10.2478/tmmp-2018-0026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.