Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions

Deepak Kumar; Virendra Kumar; Laxminarayan Das

Applications of Mathematics (2023)

  • Volume: 68, Issue: 3, page 289-304
  • ISSN: 0862-7940

Abstract

top
In this paper, we have determined the sharp lower and upper bounds on the fourth-order Hermitian-Toeplitz determinant for starlike functions with real coefficients. We also obtained the sharp bounds on the Hermitian-Toeplitz determinants of inverse and logarithmic coefficients for starlike functions with complex coefficients. Sharp bounds on the modulus of differences and difference of moduli of logarithmic and inverse coefficients are obtained. In our investigation, it has been found that the bound on the third-order Hermitian-Toeplitz determinant for starlike functions and its inverse coefficients is invariant.

How to cite

top

Kumar, Deepak, Kumar, Virendra, and Das, Laxminarayan. "Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions." Applications of Mathematics 68.3 (2023): 289-304. <http://eudml.org/doc/299541>.

@article{Kumar2023,
abstract = {In this paper, we have determined the sharp lower and upper bounds on the fourth-order Hermitian-Toeplitz determinant for starlike functions with real coefficients. We also obtained the sharp bounds on the Hermitian-Toeplitz determinants of inverse and logarithmic coefficients for starlike functions with complex coefficients. Sharp bounds on the modulus of differences and difference of moduli of logarithmic and inverse coefficients are obtained. In our investigation, it has been found that the bound on the third-order Hermitian-Toeplitz determinant for starlike functions and its inverse coefficients is invariant.},
author = {Kumar, Deepak, Kumar, Virendra, Das, Laxminarayan},
journal = {Applications of Mathematics},
keywords = {starlike function; Hermitian-Toeplitz determinant; logarithmic coefficient; inverse coefficient},
language = {eng},
number = {3},
pages = {289-304},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions},
url = {http://eudml.org/doc/299541},
volume = {68},
year = {2023},
}

TY - JOUR
AU - Kumar, Deepak
AU - Kumar, Virendra
AU - Das, Laxminarayan
TI - Hermitian-Toeplitz determinants and some coefficient functionals for the starlike functions
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 3
SP - 289
EP - 304
AB - In this paper, we have determined the sharp lower and upper bounds on the fourth-order Hermitian-Toeplitz determinant for starlike functions with real coefficients. We also obtained the sharp bounds on the Hermitian-Toeplitz determinants of inverse and logarithmic coefficients for starlike functions with complex coefficients. Sharp bounds on the modulus of differences and difference of moduli of logarithmic and inverse coefficients are obtained. In our investigation, it has been found that the bound on the third-order Hermitian-Toeplitz determinant for starlike functions and its inverse coefficients is invariant.
LA - eng
KW - starlike function; Hermitian-Toeplitz determinant; logarithmic coefficient; inverse coefficient
UR - http://eudml.org/doc/299541
ER -

References

top
  1. Ali, M. F., Thomas, D. K., Vasudevarao, A., 10.1017/S0004972717001174, Bull. Aust. Math. Soc. 97 (2018), 253-264. (2018) Zbl1390.30018MR3772655DOI10.1017/S0004972717001174
  2. Babalola, K. O., On H 3 , 1 Hankel determinants for some classes of univalent functions, Inequality Theory & Applications 6 Nova Science Publishers, New York (2010), 1-7. (2010) 
  3. Cho, N. E., Kumar, V., Kwon, O. S., Sim, Y. J., 10.1186/s13660-019-2231-3, J. Inequal. Appl. 2019 (2019), Article ID 276, 13 pages. (2019) Zbl07459304MR4025537DOI10.1186/s13660-019-2231-3
  4. Cudna, K., Kwon, O. S., Lecko, A., Sim, Y. J., Śmiarowska, B., 10.1007/s40590-019-00271-1, Bol. Soc. Mat. Mex., III. Ser. 26 (2020), 361-375. (2020) Zbl1435.30044MR4110457DOI10.1007/s40590-019-00271-1
  5. Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259. Springer, New York (1983). (1983) Zbl0514.30001MR0708494
  6. Hayman, W. K., 10.1112/plms/s3-18.1.77, Proc. Lond. Math. Soc., III. Ser. 18 (1968), 77-94. (1968) Zbl0158.32101MR0219715DOI10.1112/plms/s3-18.1.77
  7. Janteng, A., Halim, S. A., Darus, M., Hankel determinant for starlike and convex functions, Int. J. Math. Anal., Ruse 1 (2007), 619-625. (2007) Zbl1137.30308MR2370200
  8. Jastrzębski, P., Kowalczyk, B., Kwon, O. S., Sim, Y. J., 10.1007/s13398-020-00895-3, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 114 (2020), Article ID 166, 14 pages. (2020) Zbl1446.30027MR4123919DOI10.1007/s13398-020-00895-3
  9. Kowalczyk, B., Lecko, A., 10.1017/S0004972721000836, Bull. Aust. Math. Soc. 105 (2022), 458-467. (2022) Zbl07527748MR4419590DOI10.1017/S0004972721000836
  10. Kowalczyk, B., Lecko, A., 10.1007/s40840-021-01217-5, Bull. Malays. Math. Sci. Soc. (2) 45 (2022), 727-740. (2022) Zbl1486.30040MR4380027DOI10.1007/s40840-021-01217-5
  11. Kowalczyk, B., Lecko, A., Sim, Y. J., 10.1017/S0004972717001125, Bull. Aust. Math. Soc. 97 (2018), 435-445. (2018) Zbl1394.30007MR3802458DOI10.1017/S0004972717001125
  12. Kumar, V., 10.1007/s41980-021-00564-0, Bull. Iran. Math. Soc. 48 (2022), 1093-1109. (2022) Zbl1490.30010MR4421115DOI10.1007/s41980-021-00564-0
  13. Kumar, V., Cho, N. E., 10.3906/mat-2101-104, Turk. J. Math. 45 (2021), 2678-2687. (2021) Zbl07579577MR4360588DOI10.3906/mat-2101-104
  14. Kumar, V., Kumar, S., 10.1007/s40590-021-00362-y, Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 55, 16 pages. (2021) Zbl1469.30027MR4266686DOI10.1007/s40590-021-00362-y
  15. Kumar, V., Nagpal, S., Cho, N. E., 10.1007/s13398-021-01185-2, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 116 (2022), Article ID 44, 14 pages. (2022) Zbl1482.30041MR4344855DOI10.1007/s13398-021-01185-2
  16. Kumar, V., Srivastava, R., Cho, N. E., 10.18514/MMN.2020.3361, Miskolc Math. Notes 21 (2020), 939-952. (2020) Zbl1474.30086MR4194805DOI10.18514/MMN.2020.3361
  17. Kwon, O. S., Lecko, A., Sim, Y. J., 10.1007/s40840-018-0683-0, Bull. Malays. Math. Sci. Soc. (2) 42 (2019), 767-780. (2019) Zbl1419.30007MR3935352DOI10.1007/s40840-018-0683-0
  18. Lecko, A., Sim, Y. J., Śmiarowska, B., 10.1007/s13324-020-00382-3, Anal. Math. Phys. 10 (2020), Article ID 39, 11 pages. (2020) Zbl1450.30028MR4137139DOI10.1007/s13324-020-00382-3
  19. Lee, S. K., Ravichandran, V., Supramaniam, S., 10.1186/1029-242X-2013-281, J. Inequal. Appl. 2013 (2013), Article ID 281, 17 pages. (2013) Zbl1302.30018MR3073988DOI10.1186/1029-242X-2013-281
  20. Libera, R. J., Złotkiewicz, E. J., 10.1090/S0002-9939-1982-0652447-5, Proc. Am. Math. Soc. 85 (1982), 225-230. (1982) Zbl0464.30019MR0652447DOI10.1090/S0002-9939-1982-0652447-5
  21. Libera, R. J., Złotkiewicz, E. J., 10.1090/S0002-9939-1983-0681830-8, Proc. Am. Math. Soc. 87 (1983), 251-257. (1983) Zbl0488.30010MR0681830DOI10.1090/S0002-9939-1983-0681830-8
  22. Löwner, K., 10.1007/BF01448091, Math. Ann. 89 (1923), 103-121 German 9999JFM99999 49.0714.01. (1923) MR1512136DOI10.1007/BF01448091
  23. Sim, Y. J., Thomas, D. K., 10.3390/sym12122040, Symmetry 12 (2020), Article ID 2040, 14 pages. (2020) DOI10.3390/sym12122040
  24. Thomas, D. K., On the coefficients of strongly starlike functions, Indian J. Math. 58 (2016), 135-146. (2016) Zbl1360.30015MR3559483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.