Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space

Michael Gil'

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 567-573
  • ISSN: 0011-4642

Abstract

top
Let A be a bounded linear operator in a complex separable Hilbert space , and S be a selfadjoint operator in . Assuming that A - S belongs to the Schatten-von Neumann ideal 𝒮 p ( p > 1 ) , we derive a bound for k | R λ k ( A ) - λ k ( S ) | p , where λ k ( A ) ( k = 1 , 2 , ) are the eigenvalues of A . Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. In addition, in the case p = 2 we refine the Weyl inequality between the real parts of the eigenvalues of A and the eigenvalues of its Hermitian component.

How to cite

top

Gil', Michael. "Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space." Czechoslovak Mathematical Journal 74.2 (2024): 567-573. <http://eudml.org/doc/299544>.

@article{Gil2024,
abstract = {Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal \{H\}$, and $S$ be a selfadjoint operator in $\mathcal \{H\}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal \{S\}_p$$(p> 1),$ we derive a bound for $\sum _\{k\}| \{\rm R\} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$$(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.},
author = {Gil', Michael},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality},
language = {eng},
number = {2},
pages = {567-573},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space},
url = {http://eudml.org/doc/299544},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Gil', Michael
TI - Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 567
EP - 573
AB - Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$$(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$$(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
LA - eng
KW - Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
UR - http://eudml.org/doc/299544
ER -

References

top
  1. Abdelmoumen, B., Jeribi, A., Mnif, M., Invariance of the Schechter essential spectrum under polynomially compact operator perturbation, Extr. Math. 26 (2011), 61-73. (2011) Zbl1283.47007MR2908391
  2. Aiena, P., Triolo, S., 10.14232/actasm-014-785-1, Acta Sci. Math. 82 (2016), 205-219. (2016) Zbl1374.47006MR3526346DOI10.14232/actasm-014-785-1
  3. Bhatia, R., Davis, C., Perturbation of extended enumerations of eigenvalues, Acta Sci. Math. 65 (1999), 277-286. (1999) Zbl0933.47015MR1702207
  4. Bhatia, R., Elsner, L., 10.1007/BF02867116, Proc. Indian Acad. Sci., Math. Sci. 104 (1994), 483-494. (1994) Zbl0805.47017MR1314392DOI10.1007/BF02867116
  5. Chaker, W., Jeribi, A., Krichen, B., 10.1002/mana.201200007, Math. Nachr. 288 (2015), 1476-1486. (2015) Zbl1343.47015MR3395822DOI10.1002/mana.201200007
  6. Gil', M. I., Lower bounds for eigenvalues of Schatten-von Neumann operators, JIPAM, J. Inequal. Pure Appl. Math. 8 (2007), Article ID 66, 7 pages. (2007) Zbl1133.47016MR2345921
  7. Gil', M. I., 10.7153/jmi-04-46, J. Math. Inequal. 4 (2010), 517-522. (2010) Zbl1213.15016MR2777268DOI10.7153/jmi-04-46
  8. Gil', M. I., 10.1016/j.jfa.2014.06.019, J. Funct. Anal. 267 (2014), 3500-3506. (2014) Zbl1359.47016MR3261118DOI10.1016/j.jfa.2014.06.019
  9. Gil', M. I., A bound for imaginary parts of eigenvalues of Hilbert-Schmidt operators, Funct. Anal. Approx. Comput. 7 (2015), 35-38. (2015) Zbl1355.47011MR3313254
  10. Gil', M. I., 10.1142/S0219199715500224, Commun. Contemp. Math. 18 (2016), Article ID 1550022, 5 pages. (2016) Zbl1336.47022MR3454622DOI10.1142/S0219199715500224
  11. Gil', M. I., 10.1142/10482, World Scientific, Hackensack (2018). (2018) Zbl1422.47004MR3751395DOI10.1142/10482
  12. Gil', M. I., 10.15352/aot.1801-1293, Adv. Oper. Theory 4 (2019), 113-139. (2019) Zbl06946446MR3867337DOI10.15352/aot.1801-1293
  13. Gil', M. I., 10.33205/cma.1060718, Constr. Math. Anal. 5 (2022), 46-53. (2022) Zbl1497.47009MR4410203DOI10.33205/cma.1060718
  14. Gohberg, I. C., Krein, M. G., 10.1090/mmono/018, Translations of Mathematical Monographs 18. AMS, Providence (1969). (1969) Zbl0181.13503MR0246142DOI10.1090/mmono/018
  15. Gohberg, I. C., Krein, M. G., 10.1090/mmono/024, Translations of Mathematical Monographs 24. AMS, Providence (1970). (1970) Zbl0194.43804MR0264447DOI10.1090/mmono/024
  16. Jeribi, A., 10.1007/978-981-16-2528-2, Springer, Singapore (2021). (2021) Zbl1483.47001MR4306622DOI10.1007/978-981-16-2528-2
  17. Kahan, W., 10.1090/S0002-9939-1975-0369394-5, Proc. Am. Math. Soc. 48 (1975), 11-17. (1975) Zbl0322.15022MR0369394DOI10.1090/S0002-9939-1975-0369394-5
  18. Kato, T., 10.1007/978-3-642-66282-9, Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1980). (1980) Zbl0435.47001MR0407617DOI10.1007/978-3-642-66282-9
  19. Kato, T., 10.1007/BF01238911, Commun. Math. Phys. 111 (1987), 501-504. (1987) Zbl0632.47002MR0900507DOI10.1007/BF01238911
  20. Killip, R., 10.1155/S1073792802204250, Int. Math. Res. Not. 2002 (2002), 2029-2061. (2002) Zbl1021.34071MR1925875DOI10.1155/S1073792802204250
  21. Ma, R., Wang, H., Elsanosi, M., 10.1002/mana.201200288, Math. Nachr. 286 (2013), 1805-1819. (2013) Zbl1298.34041MR3145173DOI10.1002/mana.201200288
  22. Rojo, O., 10.1155/JIA/2006/43465, J. Inequal. Appl. 2006 (2006), Article ID 43465, 15 pages. (2006) Zbl1133.26321MR2270311DOI10.1155/JIA/2006/43465
  23. Sahari, M. L., Taha, A. K., Randriamihamison, L., 10.4418/2019.74.1.3, Matematiche 74 (2019), 35-47. (2019) MR3964778DOI10.4418/2019.74.1.3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.