Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 567-573
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGil', Michael. "Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space." Czechoslovak Mathematical Journal 74.2 (2024): 567-573. <http://eudml.org/doc/299544>.
@article{Gil2024,
abstract = {Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal \{H\}$, and $S$ be a selfadjoint operator in $\mathcal \{H\}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal \{S\}_p$$(p> 1),$ we derive a bound for $\sum _\{k\}| \{\rm R\} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$$(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.},
author = {Gil', Michael},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality},
language = {eng},
number = {2},
pages = {567-573},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space},
url = {http://eudml.org/doc/299544},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Gil', Michael
TI - Perturbations of real parts of eigenvalues of bounded linear operators in a Hilbert space
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 567
EP - 573
AB - Let $A$ be a bounded linear operator in a complex separable Hilbert space $\mathcal {H}$, and $S$ be a selfadjoint operator in $\mathcal {H}$. Assuming that $A-S$ belongs to the Schatten-von Neumann ideal $\mathcal {S}_p$$(p> 1),$ we derive a bound for $\sum _{k}| {\rm R} \lambda _k(A)-\lambda _k(S)|^p$, where $\lambda _k(A)$$(k=1, 2, \dots )$ are the eigenvalues of $A$. Our results are formulated in terms of the “extended” eigenvalue sets in the sense introduced by T. Kato. In addition, in the case $p=2$ we refine the Weyl inequality between the real parts of the eigenvalues of $A$ and the eigenvalues of its Hermitian component.
LA - eng
KW - Hilbert space; linear operator; eigenvalue; Kato theorem; Weyl inequality
UR - http://eudml.org/doc/299544
ER -
References
top- Abdelmoumen, B., Jeribi, A., Mnif, M., Invariance of the Schechter essential spectrum under polynomially compact operator perturbation, Extr. Math. 26 (2011), 61-73. (2011) Zbl1283.47007MR2908391
- Aiena, P., Triolo, S., 10.14232/actasm-014-785-1, Acta Sci. Math. 82 (2016), 205-219. (2016) Zbl1374.47006MR3526346DOI10.14232/actasm-014-785-1
- Bhatia, R., Davis, C., Perturbation of extended enumerations of eigenvalues, Acta Sci. Math. 65 (1999), 277-286. (1999) Zbl0933.47015MR1702207
- Bhatia, R., Elsner, L., 10.1007/BF02867116, Proc. Indian Acad. Sci., Math. Sci. 104 (1994), 483-494. (1994) Zbl0805.47017MR1314392DOI10.1007/BF02867116
- Chaker, W., Jeribi, A., Krichen, B., 10.1002/mana.201200007, Math. Nachr. 288 (2015), 1476-1486. (2015) Zbl1343.47015MR3395822DOI10.1002/mana.201200007
- Gil', M. I., Lower bounds for eigenvalues of Schatten-von Neumann operators, JIPAM, J. Inequal. Pure Appl. Math. 8 (2007), Article ID 66, 7 pages. (2007) Zbl1133.47016MR2345921
- Gil', M. I., 10.7153/jmi-04-46, J. Math. Inequal. 4 (2010), 517-522. (2010) Zbl1213.15016MR2777268DOI10.7153/jmi-04-46
- Gil', M. I., 10.1016/j.jfa.2014.06.019, J. Funct. Anal. 267 (2014), 3500-3506. (2014) Zbl1359.47016MR3261118DOI10.1016/j.jfa.2014.06.019
- Gil', M. I., A bound for imaginary parts of eigenvalues of Hilbert-Schmidt operators, Funct. Anal. Approx. Comput. 7 (2015), 35-38. (2015) Zbl1355.47011MR3313254
- Gil', M. I., 10.1142/S0219199715500224, Commun. Contemp. Math. 18 (2016), Article ID 1550022, 5 pages. (2016) Zbl1336.47022MR3454622DOI10.1142/S0219199715500224
- Gil', M. I., 10.1142/10482, World Scientific, Hackensack (2018). (2018) Zbl1422.47004MR3751395DOI10.1142/10482
- Gil', M. I., 10.15352/aot.1801-1293, Adv. Oper. Theory 4 (2019), 113-139. (2019) Zbl06946446MR3867337DOI10.15352/aot.1801-1293
- Gil', M. I., 10.33205/cma.1060718, Constr. Math. Anal. 5 (2022), 46-53. (2022) Zbl1497.47009MR4410203DOI10.33205/cma.1060718
- Gohberg, I. C., Krein, M. G., 10.1090/mmono/018, Translations of Mathematical Monographs 18. AMS, Providence (1969). (1969) Zbl0181.13503MR0246142DOI10.1090/mmono/018
- Gohberg, I. C., Krein, M. G., 10.1090/mmono/024, Translations of Mathematical Monographs 24. AMS, Providence (1970). (1970) Zbl0194.43804MR0264447DOI10.1090/mmono/024
- Jeribi, A., 10.1007/978-981-16-2528-2, Springer, Singapore (2021). (2021) Zbl1483.47001MR4306622DOI10.1007/978-981-16-2528-2
- Kahan, W., 10.1090/S0002-9939-1975-0369394-5, Proc. Am. Math. Soc. 48 (1975), 11-17. (1975) Zbl0322.15022MR0369394DOI10.1090/S0002-9939-1975-0369394-5
- Kato, T., 10.1007/978-3-642-66282-9, Grundlehren der mathematischen Wissenschaften 132. Springer, Berlin (1980). (1980) Zbl0435.47001MR0407617DOI10.1007/978-3-642-66282-9
- Kato, T., 10.1007/BF01238911, Commun. Math. Phys. 111 (1987), 501-504. (1987) Zbl0632.47002MR0900507DOI10.1007/BF01238911
- Killip, R., 10.1155/S1073792802204250, Int. Math. Res. Not. 2002 (2002), 2029-2061. (2002) Zbl1021.34071MR1925875DOI10.1155/S1073792802204250
- Ma, R., Wang, H., Elsanosi, M., 10.1002/mana.201200288, Math. Nachr. 286 (2013), 1805-1819. (2013) Zbl1298.34041MR3145173DOI10.1002/mana.201200288
- Rojo, O., 10.1155/JIA/2006/43465, J. Inequal. Appl. 2006 (2006), Article ID 43465, 15 pages. (2006) Zbl1133.26321MR2270311DOI10.1155/JIA/2006/43465
- Sahari, M. L., Taha, A. K., Randriamihamison, L., 10.4418/2019.74.1.3, Matematiche 74 (2019), 35-47. (2019) MR3964778DOI10.4418/2019.74.1.3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.