Some homological properties of amalgamated modules along an ideal

Hanieh Shoar; Maryam Salimi; Abolfazl Tehranian; Hamid Rasouli; Elham Tavasoli

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 475-486
  • ISSN: 0011-4642

Abstract

top
Let R and S be commutative rings with identity, J be an ideal of S , f : R S be a ring homomorphism, M be an R -module, N be an S -module, and let ϕ : M N be an R -homomorphism. The amalgamation of R with S along J with respect to f denoted by R f J was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of ( R f J ) -module called the amalgamation of M and N along J with respect to ϕ , and denoted by M ϕ J N . We study some homological properties of the ( R f J ) -module M ϕ J N . Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the ( R f J ) -module M ϕ J N in connection to their corresponding properties of the R -modules M and J N .

How to cite

top

Shoar, Hanieh, et al. "Some homological properties of amalgamated modules along an ideal." Czechoslovak Mathematical Journal 73.2 (2023): 475-486. <http://eudml.org/doc/299547>.

@article{Shoar2023,
abstract = {Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \rightarrow S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \rightarrow N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^\{f\} J$ was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^\{f\} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^\{\varphi \} JN$. We study some homological properties of the $(R \bowtie ^\{f\} J)$-module $M \bowtie ^\{\varphi \} JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^\{f\} J)$-module $M \bowtie ^\{\varphi \} JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.},
author = {Shoar, Hanieh, Salimi, Maryam, Tehranian, Abolfazl, Rasouli, Hamid, Tavasoli, Elham},
journal = {Czechoslovak Mathematical Journal},
keywords = {amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module},
language = {eng},
number = {2},
pages = {475-486},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some homological properties of amalgamated modules along an ideal},
url = {http://eudml.org/doc/299547},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Shoar, Hanieh
AU - Salimi, Maryam
AU - Tehranian, Abolfazl
AU - Rasouli, Hamid
AU - Tavasoli, Elham
TI - Some homological properties of amalgamated modules along an ideal
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 475
EP - 486
AB - Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \rightarrow S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \rightarrow N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^{f} J$ was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^{f} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^{\varphi } JN$. We study some homological properties of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.
LA - eng
KW - amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module
UR - http://eudml.org/doc/299547
ER -

References

top
  1. Bouba, E. M., Mahdou, N., Tamekkante, M., 10.1007/s10474-017-0775-6, Acta Math. Hung. 154 (2018), 29-42. (2018) Zbl1399.13011MR3746520DOI10.1007/s10474-017-0775-6
  2. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  3. D'Anna, M., 10.1016/j.jalgebra.2005.12.023, J. Algebra 306 (2006), 507-519. (2006) Zbl1120.13022MR2271349DOI10.1016/j.jalgebra.2005.12.023
  4. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
  5. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1016/j.jpaa.2009.12.008, J. Pure Appl. Algebra 214 (2010), 1633-1641. (2010) Zbl1191.13006MR2593689DOI10.1016/j.jpaa.2009.12.008
  6. D'Anna, M., Fontana, M., 10.1142/S0219498807002326, J. Algebra Appl. 6 (2007), 443-459. (2007) Zbl1126.13002MR2337762DOI10.1142/S0219498807002326
  7. D'Anna, M., Fontana, M., 10.1007/s11512-006-0038-1, Ark. Mat. 45 (2007), 241-252. (2007) Zbl1143.13002MR2342602DOI10.1007/s11512-006-0038-1
  8. Khalfaoui, R. El, Mahdou, N., Sahandi, P., Shirmohammadi, N., 10.4134/CKMS.c200064, Commun. Korean Math. Soc. 36 (2021), 1-10. (2021) Zbl1467.13026MR4215837DOI10.4134/CKMS.c200064
  9. Enochs, E., 10.1090/S0002-9939-1984-0754698-X, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.1090/S0002-9939-1984-0754698-X
  10. Kosmatov, N. V., 10.1023/A:1020351104689, J. Math. Sci., New York 112 (2002), 4367-4370. (2002) Zbl1052.16006MR1757826DOI10.1023/A:1020351104689
  11. Salimi, M., Tavasoli, E., Yassemi, S., 10.4171/RSMUP/129-8, Rend. Semin. Mat. Univ. Padova 129 (2013), 115-127. (2013) Zbl1279.13025MR3090634DOI10.4171/RSMUP/129-8
  12. Shapiro, J., 10.1016/j.jalgebra.2009.12.003, J. Algebra 323 (2010), 1155-1158. (2010) Zbl1184.13069MR2578598DOI10.1016/j.jalgebra.2009.12.003
  13. Tavasoli, E., Some homological properties of amalgamation, Mat. Vesn. 68 (2016), 254-258. (2016) Zbl1458.13026MR3554642
  14. Tiraş, Y., Tercan, A., Harmanci, A., Prime modules, Honam Math. J. 18 (1996), 5-15. (1996) Zbl0948.13004MR1402357
  15. Xu, J., 10.1007/BFb0094173, Lecture Notes in Mathematics 1634. Springer, Berlin (1996). (1996) Zbl0860.16002MR1438789DOI10.1007/BFb0094173

NotesEmbed ?

top

You must be logged in to post comments.