Some homological properties of amalgamated modules along an ideal

Hanieh Shoar; Maryam Salimi; Abolfazl Tehranian; Hamid Rasouli; Elham Tavasoli

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 475-486
  • ISSN: 0011-4642

Abstract

top
Let R and S be commutative rings with identity, J be an ideal of S , f : R S be a ring homomorphism, M be an R -module, N be an S -module, and let ϕ : M N be an R -homomorphism. The amalgamation of R with S along J with respect to f denoted by R f J was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of ( R f J ) -module called the amalgamation of M and N along J with respect to ϕ , and denoted by M ϕ J N . We study some homological properties of the ( R f J ) -module M ϕ J N . Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the ( R f J ) -module M ϕ J N in connection to their corresponding properties of the R -modules M and J N .

How to cite

top

Shoar, Hanieh, et al. "Some homological properties of amalgamated modules along an ideal." Czechoslovak Mathematical Journal 73.2 (2023): 475-486. <http://eudml.org/doc/299547>.

@article{Shoar2023,
abstract = {Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \rightarrow S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \rightarrow N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^\{f\} J$ was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^\{f\} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^\{\varphi \} JN$. We study some homological properties of the $(R \bowtie ^\{f\} J)$-module $M \bowtie ^\{\varphi \} JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^\{f\} J)$-module $M \bowtie ^\{\varphi \} JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.},
author = {Shoar, Hanieh, Salimi, Maryam, Tehranian, Abolfazl, Rasouli, Hamid, Tavasoli, Elham},
journal = {Czechoslovak Mathematical Journal},
keywords = {amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module},
language = {eng},
number = {2},
pages = {475-486},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some homological properties of amalgamated modules along an ideal},
url = {http://eudml.org/doc/299547},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Shoar, Hanieh
AU - Salimi, Maryam
AU - Tehranian, Abolfazl
AU - Rasouli, Hamid
AU - Tavasoli, Elham
TI - Some homological properties of amalgamated modules along an ideal
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 475
EP - 486
AB - Let $R$ and $S$ be commutative rings with identity, $J$ be an ideal of $S$, $f \colon R \rightarrow S$ be a ring homomorphism, $M$ be an $R$-module, $N$ be an $S$-module, and let $\varphi \colon M \rightarrow N$ be an $R$-homomorphism. The amalgamation of $R$ with $S$ along $J$ with respect to $f$ denoted by $R \bowtie ^{f} J$ was introduced by M. D’Anna et al. (2010). Recently, R. El Khalfaoui et al. (2021) introduced a special kind of $(R \bowtie ^{f} J)$-module called the amalgamation of $M$ and $N$ along $J$ with respect to $\varphi $, and denoted by $M \bowtie ^{\varphi } JN$. We study some homological properties of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$. Among other results, we investigate projectivity, flatness, injectivity, Cohen-Macaulayness, and prime property of the $(R \bowtie ^{f} J)$-module $M \bowtie ^{\varphi } JN$ in connection to their corresponding properties of the $R$-modules $M$ and $JN$.
LA - eng
KW - amalgamation of ring; amalgamation of module; Cohen-Macaulay; injective module; projective(flat) module
UR - http://eudml.org/doc/299547
ER -

References

top
  1. Bouba, E. M., Mahdou, N., Tamekkante, M., 10.1007/s10474-017-0775-6, Acta Math. Hung. 154 (2018), 29-42. (2018) Zbl1399.13011MR3746520DOI10.1007/s10474-017-0775-6
  2. Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60. Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
  3. D'Anna, M., 10.1016/j.jalgebra.2005.12.023, J. Algebra 306 (2006), 507-519. (2006) Zbl1120.13022MR2271349DOI10.1016/j.jalgebra.2005.12.023
  4. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1515/9783110213188.155, Commutative Algebra and Its Applications Walter de Gruyter, Berlin (2009), 155-172. (2009) Zbl1177.13043MR2606283DOI10.1515/9783110213188.155
  5. D'Anna, M., Finocchiaro, C. A., Fontana, M., 10.1016/j.jpaa.2009.12.008, J. Pure Appl. Algebra 214 (2010), 1633-1641. (2010) Zbl1191.13006MR2593689DOI10.1016/j.jpaa.2009.12.008
  6. D'Anna, M., Fontana, M., 10.1142/S0219498807002326, J. Algebra Appl. 6 (2007), 443-459. (2007) Zbl1126.13002MR2337762DOI10.1142/S0219498807002326
  7. D'Anna, M., Fontana, M., 10.1007/s11512-006-0038-1, Ark. Mat. 45 (2007), 241-252. (2007) Zbl1143.13002MR2342602DOI10.1007/s11512-006-0038-1
  8. Khalfaoui, R. El, Mahdou, N., Sahandi, P., Shirmohammadi, N., 10.4134/CKMS.c200064, Commun. Korean Math. Soc. 36 (2021), 1-10. (2021) Zbl1467.13026MR4215837DOI10.4134/CKMS.c200064
  9. Enochs, E., 10.1090/S0002-9939-1984-0754698-X, Proc. Am. Math. Soc. 92 (1984), 179-184. (1984) Zbl0522.13008MR0754698DOI10.1090/S0002-9939-1984-0754698-X
  10. Kosmatov, N. V., 10.1023/A:1020351104689, J. Math. Sci., New York 112 (2002), 4367-4370. (2002) Zbl1052.16006MR1757826DOI10.1023/A:1020351104689
  11. Salimi, M., Tavasoli, E., Yassemi, S., 10.4171/RSMUP/129-8, Rend. Semin. Mat. Univ. Padova 129 (2013), 115-127. (2013) Zbl1279.13025MR3090634DOI10.4171/RSMUP/129-8
  12. Shapiro, J., 10.1016/j.jalgebra.2009.12.003, J. Algebra 323 (2010), 1155-1158. (2010) Zbl1184.13069MR2578598DOI10.1016/j.jalgebra.2009.12.003
  13. Tavasoli, E., Some homological properties of amalgamation, Mat. Vesn. 68 (2016), 254-258. (2016) Zbl1458.13026MR3554642
  14. Tiraş, Y., Tercan, A., Harmanci, A., Prime modules, Honam Math. J. 18 (1996), 5-15. (1996) Zbl0948.13004MR1402357
  15. Xu, J., 10.1007/BFb0094173, Lecture Notes in Mathematics 1634. Springer, Berlin (1996). (1996) Zbl0860.16002MR1438789DOI10.1007/BFb0094173

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.