Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production

Lu Yang; Xi Liu; Zhibo Hou

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 1, page 49-70
  • ISSN: 0011-4642

Abstract

top
We consider the Keller-Segel-Navier-Stokes system n t + 𝐮 · n = Δ n - · ( n v ) , x Ω , t > 0 , v t + 𝐮 · v = Δ v - v + w , x Ω , t > 0 , w t + 𝐮 · w = Δ w - w + n , x Ω , t > 0 , 𝐮 t + ( 𝐮 · ) 𝐮 = Δ 𝐮 + P + n φ , · 𝐮 = 0 , x Ω , t > 0 , which is considered in bounded domain Ω N ( N { 2 , 3 } ) with smooth boundary, where φ C 1 + δ ( Ω ¯ ) with δ ( 0 , 1 ) . We show that if the initial data n 0 L N / 2 ( Ω ) , v 0 L N ( Ω ) , w 0 L N ( Ω ) and 𝐮 0 L N ( Ω ) is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state ( n ¯ 0 , n ¯ 0 , n ¯ 0 , 0 ) exponentially with n ¯ 0 : = ( 1 / | Ω | ) Ω n 0 ( x ) d x .

How to cite

top

Yang, Lu, Liu, Xi, and Hou, Zhibo. "Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production." Czechoslovak Mathematical Journal 73.1 (2023): 49-70. <http://eudml.org/doc/299551>.

@article{Yang2023,
abstract = {We consider the Keller-Segel-Navier-Stokes system \[ \{\left\lbrace \begin\{array\}\{ll\} n\_t+\{\bf u\}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ),& x\in \Omega ,\ t>0,\\ v\_t +\{\bf u\}\cdot \nabla v=\Delta v -v+w, &x\in \Omega ,\ t>0,\\ w\_t+\{\bf u\}\cdot \nabla w=\Delta w -w+n, &x\in \Omega ,\ t>0,\\ \{\bf \{u\}\}\_t + (\{\bf \{u\}\}\cdot \nabla )\{\bf \{u\}\} = \Delta \{\bf \{u\}\} + \nabla P + n\nabla \phi ,\ \nabla \cdot \{\bf u\}=0, &x\in \Omega ,\ t>0, \end\{array\}\right.\} \] which is considered in bounded domain $\Omega \subset \mathbb \{R\}^N$$(N \in \lbrace 2,3\rbrace )$ with smooth boundary, where $\phi \in C^\{1+\delta \}(\overline\{\Omega \})$ with $\delta \in (0,1)$. We show that if the initial data $\Vert n_0\Vert _\{L^\{\{N\}/\{2\}\}(\Omega )\}$, $\Vert \nabla v_0\Vert _\{L^N(\Omega )\}$, $\Vert \nabla w_0\Vert _\{L^N(\Omega )\}$ and $\Vert \{\bf u\}_0\Vert _\{L^N(\Omega )\}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $(\{\bar\{n\}\}_0,\{\bar\{n\}\}_0,\{\bar\{n\}\}_0,0)$ exponentially with $\{\bar\{n\}\}_0:=(1/|\Omega |)\int _\{\Omega \}n_0(x)\{\rm d\}x$.},
author = {Yang, Lu, Liu, Xi, Hou, Zhibo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process},
language = {eng},
number = {1},
pages = {49-70},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production},
url = {http://eudml.org/doc/299551},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Yang, Lu
AU - Liu, Xi
AU - Hou, Zhibo
TI - Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 1
SP - 49
EP - 70
AB - We consider the Keller-Segel-Navier-Stokes system \[ {\left\lbrace \begin{array}{ll} n_t+{\bf u}\cdot \nabla n =\Delta n - \nabla \cdot (n\nabla v ),& x\in \Omega ,\ t>0,\\ v_t +{\bf u}\cdot \nabla v=\Delta v -v+w, &x\in \Omega ,\ t>0,\\ w_t+{\bf u}\cdot \nabla w=\Delta w -w+n, &x\in \Omega ,\ t>0,\\ {\bf {u}}_t + ({\bf {u}}\cdot \nabla ){\bf {u}} = \Delta {\bf {u}} + \nabla P + n\nabla \phi ,\ \nabla \cdot {\bf u}=0, &x\in \Omega ,\ t>0, \end{array}\right.} \] which is considered in bounded domain $\Omega \subset \mathbb {R}^N$$(N \in \lbrace 2,3\rbrace )$ with smooth boundary, where $\phi \in C^{1+\delta }(\overline{\Omega })$ with $\delta \in (0,1)$. We show that if the initial data $\Vert n_0\Vert _{L^{{N}/{2}}(\Omega )}$, $\Vert \nabla v_0\Vert _{L^N(\Omega )}$, $\Vert \nabla w_0\Vert _{L^N(\Omega )}$ and $\Vert {\bf u}_0\Vert _{L^N(\Omega )}$ is small enough, an associated initial-boundary value problem possesses a global classical solution which decays to the constant state $({\bar{n}}_0,{\bar{n}}_0,{\bar{n}}_0,0)$ exponentially with ${\bar{n}}_0:=(1/|\Omega |)\int _{\Omega }n_0(x){\rm d}x$.
LA - eng
KW - Keller-Segel-Navier-Stokes; global solution; decay estimate; indirect process
UR - http://eudml.org/doc/299551
ER -

References

top
  1. Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M., 10.1142/S021820251550044X, Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. (2015) Zbl1326.35397MR3351175DOI10.1142/S021820251550044X
  2. Cao, X., 10.3934/dcds.2015.35.1891, Discrete Contin. Dyn. Syst. 35 (2015), 1891-1904. (2015) Zbl06384058MR3294230DOI10.3934/dcds.2015.35.1891
  3. Cao, X., Lankeit, J., 10.1007/s00526-016-1027-2, Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 107, 39 pages. (2016) Zbl1366.35075MR3531759DOI10.1007/s00526-016-1027-2
  4. Corrias, L., Perthame, B., 10.1016/j.mcm.2007.06.005, Math. Comput. Modelling 47 (2008), 755-764. (2008) Zbl1134.92006MR2404241DOI10.1016/j.mcm.2007.06.005
  5. Espejo, E., Suzuki, T., 10.1016/j.nonrwa.2014.07.001, Nonlinear Anal., Real World Appl. 21 (2015), 110-126. (2015) Zbl1302.35102MR3261583DOI10.1016/j.nonrwa.2014.07.001
  6. Fujie, K., Senba, T., 10.1016/j.jde.2017.02.031, J. Differ. Equations 263 (2017), 88-148. (2017) Zbl1364.35120MR3631302DOI10.1016/j.jde.2017.02.031
  7. Fujie, K., Senba, T., 10.1016/j.jde.2018.07.068, J. Differ. Equations 266 (2019), 942-976. (2019) Zbl1406.35149MR3906204DOI10.1016/j.jde.2018.07.068
  8. Hillen, T., Painter, K. J., 10.1007/s00285-008-0201-3, J. Math. Biol. 58 (2009), 183-217. (2009) Zbl1161.92003MR2448428DOI10.1007/s00285-008-0201-3
  9. Horstmann, D., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. (2003) Zbl1071.35001MR2013508
  10. Jin, H.-Y., 10.1016/j.jmaa.2014.09.049, J. Math. Anal. Appl. 422 (2015), 1463-1478. (2015) Zbl1307.35139MR3269523DOI10.1016/j.jmaa.2014.09.049
  11. Li, X., Xiao, Y., 10.1016/j.nonrwa.2017.02.005, Nonlinear Anal., Real World Appl. 37 (2017), 14-30. (2017) Zbl1394.35241MR3648369DOI10.1016/j.nonrwa.2017.02.005
  12. Liu, J., Wang, Y., 10.1016/j.jde.2017.01.024, J. Differ. Equations 262 (2017), 5271-5305. (2017) Zbl1377.35148MR3612542DOI10.1016/j.jde.2017.01.024
  13. Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A., 10.1016/S0092-8240(03)00030-2, Bull. Math. Biol. 65 (2003), 693-730. (2003) Zbl1334.92077DOI10.1016/S0092-8240(03)00030-2
  14. Nagai, T., Senba, T., Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int. 40 (1997), 411-433. (1997) Zbl0901.35104MR1610709
  15. Osaki, K., Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. (2001) Zbl1145.37337MR1893940
  16. Tao, Y., Wang, Z.-A., 10.1142/S0218202512500443, Math. Models Methods Appl. Sci. 23 (2013), 1-36. (2013) Zbl1403.35136MR2997466DOI10.1142/S0218202512500443
  17. Tao, Y., Winkler, M., 10.1007/s00033-015-0541-y, Z. Angew. Math. Phys. 66 (2015), 2555-2573. (2015) Zbl1328.35084MR3412312DOI10.1007/s00033-015-0541-y
  18. Tao, Y., Winkler, M., 10.1007/s00033-016-0732-1, Z. Angew. Math. Phys. 67 (2016), Article ID 138, 23 pages. (2016) Zbl1356.35054MR3562386DOI10.1007/s00033-016-0732-1
  19. Wang, Y., 10.1142/S0218202517500579, Math. Models Methods Appl. Sci. 27 (2017), 2745-2780. (2017) Zbl1378.92010MR3723735DOI10.1142/S0218202517500579
  20. Wang, Y., Winkler, M., Xiang, Z., 10.2422/2036-2145.201603_004, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. (2018) Zbl1395.92024MR3801284DOI10.2422/2036-2145.201603_004
  21. Wang, Y., Yang, L., 10.1016/j.jde.2021.04.001, J. Differ. Equations 287 (2021), 460-490. (2021) Zbl1464.35052MR4242960DOI10.1016/j.jde.2021.04.001
  22. Winkler, M., 10.1016/j.jde.2010.02.008, J. Differ. Equations 248 (2010), 2889-2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
  23. Winkler, M., 10.1080/03605302.2011.591865, Commun. Partial Differ. Equations 37 (2012), 319-351. (2012) Zbl1236.35192MR2876834DOI10.1080/03605302.2011.591865
  24. Winkler, M., 10.1016/j.jfa.2018.12.009, J. Funct. Anal. 276 (2019), 1339-1401. (2019) Zbl1408.35132MR3912779DOI10.1016/j.jfa.2018.12.009
  25. Winkler, M., 10.1137/19M1264199, SIAM J. Math. Anal. 52 (2020), 2041-2080. (2020) Zbl1441.35079MR4091876DOI10.1137/19M1264199
  26. Winkler, M., 10.1007/s00220-021-04272-y, Commun. Math. Phys. 389 (2022), 439-489. (2022) Zbl07463712MR4365145DOI10.1007/s00220-021-04272-y
  27. Yu, H., Wang, W., Zheng, S., 10.1016/j.jmaa.2017.12.048, J. Math. Anal. Appl. 461 (2018), 1748-1770. (2018) Zbl1390.35381MR3765513DOI10.1016/j.jmaa.2017.12.048
  28. Yu, P., 10.1007/s10440-019-00307-8, Acta Appl. Math. 169 (2020), 475-497. (2020) Zbl1470.35185MR4146909DOI10.1007/s10440-019-00307-8
  29. Zhang, W., Niu, P., Liu, S., 10.1016/j.nonrwa.2019.05.002, Nonlinear Anal., Real World Appl. 50 (2019), 484-497. (2019) Zbl1435.35068MR3959244DOI10.1016/j.nonrwa.2019.05.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.