Asymptotic behavior of small-data solutions to a Keller-Segel-Navier-Stokes system with indirect signal production
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 1, page 49-70
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bellomo, N., Bellouquid, A., Tao, Y., Winkler, M., 10.1142/S021820251550044X, Math. Models Methods Appl. Sci. 25 (2015), 1663-1763. (2015) Zbl1326.35397MR3351175DOI10.1142/S021820251550044X
- Cao, X., 10.3934/dcds.2015.35.1891, Discrete Contin. Dyn. Syst. 35 (2015), 1891-1904. (2015) Zbl06384058MR3294230DOI10.3934/dcds.2015.35.1891
- Cao, X., Lankeit, J., 10.1007/s00526-016-1027-2, Calc. Var. Partial Differ. Equ. 55 (2016), Article ID 107, 39 pages. (2016) Zbl1366.35075MR3531759DOI10.1007/s00526-016-1027-2
- Corrias, L., Perthame, B., 10.1016/j.mcm.2007.06.005, Math. Comput. Modelling 47 (2008), 755-764. (2008) Zbl1134.92006MR2404241DOI10.1016/j.mcm.2007.06.005
- Espejo, E., Suzuki, T., 10.1016/j.nonrwa.2014.07.001, Nonlinear Anal., Real World Appl. 21 (2015), 110-126. (2015) Zbl1302.35102MR3261583DOI10.1016/j.nonrwa.2014.07.001
- Fujie, K., Senba, T., 10.1016/j.jde.2017.02.031, J. Differ. Equations 263 (2017), 88-148. (2017) Zbl1364.35120MR3631302DOI10.1016/j.jde.2017.02.031
- Fujie, K., Senba, T., 10.1016/j.jde.2018.07.068, J. Differ. Equations 266 (2019), 942-976. (2019) Zbl1406.35149MR3906204DOI10.1016/j.jde.2018.07.068
- Hillen, T., Painter, K. J., 10.1007/s00285-008-0201-3, J. Math. Biol. 58 (2009), 183-217. (2009) Zbl1161.92003MR2448428DOI10.1007/s00285-008-0201-3
- Horstmann, D., From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Dtsch. Math.-Ver. 105 (2003), 103-165. (2003) Zbl1071.35001MR2013508
- Jin, H.-Y., 10.1016/j.jmaa.2014.09.049, J. Math. Anal. Appl. 422 (2015), 1463-1478. (2015) Zbl1307.35139MR3269523DOI10.1016/j.jmaa.2014.09.049
- Li, X., Xiao, Y., 10.1016/j.nonrwa.2017.02.005, Nonlinear Anal., Real World Appl. 37 (2017), 14-30. (2017) Zbl1394.35241MR3648369DOI10.1016/j.nonrwa.2017.02.005
- Liu, J., Wang, Y., 10.1016/j.jde.2017.01.024, J. Differ. Equations 262 (2017), 5271-5305. (2017) Zbl1377.35148MR3612542DOI10.1016/j.jde.2017.01.024
- Luca, M., Chavez-Ross, A., Edelstein-Keshet, L., Mogilner, A., 10.1016/S0092-8240(03)00030-2, Bull. Math. Biol. 65 (2003), 693-730. (2003) Zbl1334.92077DOI10.1016/S0092-8240(03)00030-2
- Nagai, T., Senba, T., Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int. 40 (1997), 411-433. (1997) Zbl0901.35104MR1610709
- Osaki, K., Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj, Ser. Int. 44 (2001), 441-469. (2001) Zbl1145.37337MR1893940
- Tao, Y., Wang, Z.-A., 10.1142/S0218202512500443, Math. Models Methods Appl. Sci. 23 (2013), 1-36. (2013) Zbl1403.35136MR2997466DOI10.1142/S0218202512500443
- Tao, Y., Winkler, M., 10.1007/s00033-015-0541-y, Z. Angew. Math. Phys. 66 (2015), 2555-2573. (2015) Zbl1328.35084MR3412312DOI10.1007/s00033-015-0541-y
- Tao, Y., Winkler, M., 10.1007/s00033-016-0732-1, Z. Angew. Math. Phys. 67 (2016), Article ID 138, 23 pages. (2016) Zbl1356.35054MR3562386DOI10.1007/s00033-016-0732-1
- Wang, Y., 10.1142/S0218202517500579, Math. Models Methods Appl. Sci. 27 (2017), 2745-2780. (2017) Zbl1378.92010MR3723735DOI10.1142/S0218202517500579
- Wang, Y., Winkler, M., Xiang, Z., 10.2422/2036-2145.201603_004, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 18 (2018), 421-466. (2018) Zbl1395.92024MR3801284DOI10.2422/2036-2145.201603_004
- Wang, Y., Yang, L., 10.1016/j.jde.2021.04.001, J. Differ. Equations 287 (2021), 460-490. (2021) Zbl1464.35052MR4242960DOI10.1016/j.jde.2021.04.001
- Winkler, M., 10.1016/j.jde.2010.02.008, J. Differ. Equations 248 (2010), 2889-2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
- Winkler, M., 10.1080/03605302.2011.591865, Commun. Partial Differ. Equations 37 (2012), 319-351. (2012) Zbl1236.35192MR2876834DOI10.1080/03605302.2011.591865
- Winkler, M., 10.1016/j.jfa.2018.12.009, J. Funct. Anal. 276 (2019), 1339-1401. (2019) Zbl1408.35132MR3912779DOI10.1016/j.jfa.2018.12.009
- Winkler, M., 10.1137/19M1264199, SIAM J. Math. Anal. 52 (2020), 2041-2080. (2020) Zbl1441.35079MR4091876DOI10.1137/19M1264199
- Winkler, M., 10.1007/s00220-021-04272-y, Commun. Math. Phys. 389 (2022), 439-489. (2022) Zbl07463712MR4365145DOI10.1007/s00220-021-04272-y
- Yu, H., Wang, W., Zheng, S., 10.1016/j.jmaa.2017.12.048, J. Math. Anal. Appl. 461 (2018), 1748-1770. (2018) Zbl1390.35381MR3765513DOI10.1016/j.jmaa.2017.12.048
- Yu, P., 10.1007/s10440-019-00307-8, Acta Appl. Math. 169 (2020), 475-497. (2020) Zbl1470.35185MR4146909DOI10.1007/s10440-019-00307-8
- Zhang, W., Niu, P., Liu, S., 10.1016/j.nonrwa.2019.05.002, Nonlinear Anal., Real World Appl. 50 (2019), 484-497. (2019) Zbl1435.35068MR3959244DOI10.1016/j.nonrwa.2019.05.002