Global existence of smooth solutions for the compressible viscous fluid flow with radiation in
Hyejong O; Hakho Hong; Jongsung Kim
Applications of Mathematics (2023)
- Volume: 68, Issue: 5, page 535-558
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topO, Hyejong, Hong, Hakho, and Kim, Jongsung. "Global existence of smooth solutions for the compressible viscous fluid flow with radiation in $\mathbb {R}^3$." Applications of Mathematics 68.5 (2023): 535-558. <http://eudml.org/doc/299552>.
@article{O2023,
abstract = {This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in $[0,\infty )$, provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.},
author = {O, Hyejong, Hong, Hakho, Kim, Jongsung},
journal = {Applications of Mathematics},
keywords = {radiation hydrodynamics; Navier-Stokes system with radiation; existence; convergence rate},
language = {eng},
number = {5},
pages = {535-558},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global existence of smooth solutions for the compressible viscous fluid flow with radiation in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/299552},
volume = {68},
year = {2023},
}
TY - JOUR
AU - O, Hyejong
AU - Hong, Hakho
AU - Kim, Jongsung
TI - Global existence of smooth solutions for the compressible viscous fluid flow with radiation in $\mathbb {R}^3$
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 5
SP - 535
EP - 558
AB - This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in $[0,\infty )$, provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.
LA - eng
KW - radiation hydrodynamics; Navier-Stokes system with radiation; existence; convergence rate
UR - http://eudml.org/doc/299552
ER -
References
top- Chen, Z., Chai, X., Wang, W., 10.1016/S0252-9602(15)30094-1, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 265-282. (2016) Zbl1363.35243MR3432764DOI10.1016/S0252-9602(15)30094-1
- Choe, K.-I., Hong, H., Kim, J., 10.4310/CMS.2020.v18.n6.a7, Commun. Math. Sci. 18 (2020), 1661-1684. (2020) Zbl1467.35237MR4176354DOI10.4310/CMS.2020.v18.n6.a7
- Danchin, R., Ducomet, B., 10.1007/s00028-013-0211-5, J. Evol. Equ. 14 (2014), 155-195. (2014) Zbl1302.35313MR3169034DOI10.1007/s00028-013-0211-5
- Danchin, R., Ducomet, B., 10.1007/s10231-016-0566-7, Ann. Mat. Pura Appl. (4) 196 (2017), 107-153. (2017) Zbl1369.35055MR3600861DOI10.1007/s10231-016-0566-7
- Ducomet, B., Feireisl, E., Nečasová, Š., 10.1016/J.ANIHPC.2011.06.002, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), 797-812. (2011) Zbl1328.76074MR2859928DOI10.1016/J.ANIHPC.2011.06.002
- Ducomet, B., Nečasová, Š., 10.1016/j.na.2009.12.005, Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 3258-3274. (2010) Zbl1185.35158MR2587361DOI10.1016/j.na.2009.12.005
- Ducomet, B., Nečasová, Š., Global weak solutions to the 1D compressible Navier-Stokes equations with radiation, Commun. Math. Anal. 8 (2010), 23-65. (2010) Zbl1194.35305MR2738332
- Ducomet, B., Nečasová, Š., 10.1007/s10231-010-0180-z, Ann. Mat. Pura Appl. (4) 191 (2012), 219-260. (2012) Zbl1238.35085MR2909797DOI10.1007/s10231-010-0180-z
- Ducomet, B., Nečasová, Š., 10.1142/S0219530513500036, Anal. Appl., Singap. 11 (2013), Article ID 1350003, 29 pages. (2013) Zbl1261.35102MR3019508DOI10.1142/S0219530513500036
- Ducomet, B., Nečasová, Š., 10.1016/j.jmaa.2014.05.043, J. Math. Anal. Appl. 420 (2014), 464-482. (2014) Zbl1296.35140MR3229835DOI10.1016/j.jmaa.2014.05.043
- Gao, J., Tao, Q., Yao, Z.-A., 10.1016/j.jde.2016.04.033, J. Differ. Equations 261 (2016), 2334-2383. (2016) Zbl1347.35200MR3505193DOI10.1016/j.jde.2016.04.033
- Guo, Y., Wang, Y., 10.1080/03605302.2012.696296, Commun. Partial Differ. Equations 37 (2012), 2165-2208. (2012) Zbl1258.35157MR3005540DOI10.1080/03605302.2012.696296
- Hong, H., 10.1016/j.nonrwa.2016.07.005, Nonlinear Anal., Real World Appl. 35 (2017), 175-199. (2017) Zbl1356.35047MR3595322DOI10.1016/j.nonrwa.2016.07.005
- Hong, H., Wang, T., 10.1137/16M108536X, SIAM J. Math. Anal. 49 (2017), 2138-2166. (2017) Zbl1371.35196MR3664215DOI10.1137/16M108536X
- Jiang, P., 10.3934/dcds.2015.35.3015, Discrete Contin. Dyn. Syst. 35 (2015), 3015-3037. (2015) Zbl1332.76046MR3343552DOI10.3934/dcds.2015.35.3015
- Jiang, P., 10.3934/dcds.2017087, Discrete Contin. Dyn. Syst. 37 (2017), 2045-2063. (2017) Zbl1360.76222MR3640587DOI10.3934/dcds.2017087
- Jiang, P., 10.1007/s00033-018-0991-0, Z. Angew. Math. Phys. 69 (2018), Article ID 96, 29 pages. (2018) Zbl1404.35358MR3817778DOI10.1007/s00033-018-0991-0
- Jiang, S., Ju, Q., Liao, Y., 10.1137/20M1344342, SIAM J. Math. Anal. 53 (2021), 2491-2522. (2021) Zbl1464.35183MR4249060DOI10.1137/20M1344342
- Jiang, S., Li, F., Xie, F., 10.1137/140987596, SIAM J. Math. Anal. 47 (2015), 3726-3746. (2015) Zbl1331.35262MR3403137DOI10.1137/140987596
- Jiang, S., Xie, F., Zhang, J. W., A global existence result in radiation hydrodynamics, Industrial and Applied Mathematics in China Series in Contemporary Applied Mathematics 10. World Scientific, Hackensack (2009), 25-48. (2009) Zbl1423.76384MR2548855
- Jiang, P., Yu, F., 10.1155/2020/4748101, J. Funct. Spaces 2020 (2020), Article ID 4748101, 11 pages. (2020) Zbl1448.35396MR4124574DOI10.1155/2020/4748101
- Jiang, P., Zhou, Y., 10.1016/j.jmaa.2018.05.071, J. Math. Anal. Appl. 466 (2018), 324-337. (2018) Zbl1391.35174MR3818119DOI10.1016/j.jmaa.2018.05.071
- Lattanzio, C., Mascia, C., Serre, D., 10.1512/iumj.2007.56.3043, Indiana Univ. Math. J. 56 (2007), 2601-2640. (2007) Zbl1132.35062MR2360621DOI10.1512/iumj.2007.56.3043
- Li, Y., Zhu, S., 10.1016/j.jde.2014.03.007, J. Differ. Equations 256 (2014), 3943-3980. (2014) Zbl1290.35008MR3190488DOI10.1016/j.jde.2014.03.007
- Li, Y., Zhu, S., 10.3934/cpaa.2015.14.1023, Commun. Pure Appl. Anal. 14 (2015), 1023-1052. (2015) Zbl1314.35103MR3320164DOI10.3934/cpaa.2015.14.1023
- Li, Y., Zhu, S., 10.1007/s10884-015-9455-9, J. Dyn. Differ. Equations 29 (2017), 549-595. (2017) Zbl1378.35244MR3651601DOI10.1007/s10884-015-9455-9
- Lin, C., 10.4310/CMS.2011.v9.n1.a10, Commun. Math. Sci. 9 (2011), 207-223. (2011) Zbl1282.35070MR2836843DOI10.4310/CMS.2011.v9.n1.a10
- Lin, C., Coulombel, J.-F., Goudon, T., 10.1016/j.physd.2006.04.012, Physica D 218 (2006), 83-94. (2006) Zbl1096.35086MR2234210DOI10.1016/j.physd.2006.04.012
- Lin, C., Coulombel, J.-F., Goudon, T., 10.1016/j.crma.2007.10.029, C. R., Math., Acad. Sci. Paris 345 (2007), 625-628. (2007) Zbl1387.35497MR2371479DOI10.1016/j.crma.2007.10.029
- Nguyen, T., Plaza, R. G., Zumbrun, K., 10.1016/j.physd.2010.01.011, Physica D 239 (2010), 428-453. (2010) Zbl1195.37045MR2593039DOI10.1016/j.physd.2010.01.011
- Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. (1959) Zbl0088.07601MR0109940
- Pomraning, G. C., The Equations of Radiation Hydrodynamics, Pergamon Press, Elmsford (1973). (1973)
- Pu, X., Guo, B., 10.3934/krm.2016.9.165, Kinet. Relat. Models 9 (2016), 165-191. (2016) Zbl1330.35339MR3422649DOI10.3934/krm.2016.9.165
- Pu, X., Xu, X., 10.1016/j.jmaa.2017.04.053, J. Math. Anal. Appl. 454 (2017), 219-245. (2017) Zbl1369.35067MR3649851DOI10.1016/j.jmaa.2017.04.053
- Qin, Y., Feng, B., Zhang, M., 10.1016/j.jde.2012.02.022, J. Differ. Equations 252 (2012), 6175-6213. (2012) Zbl1366.76102MR2911831DOI10.1016/j.jde.2012.02.022
- Rohde, C., Wang, W., Xie, F., 10.3934/cpaa.2013.12.2145, Commun. Pure Appl. Anal. 12 (2013), 2145-2171. (2013) Zbl1282.35314MR3015674DOI10.3934/cpaa.2013.12.2145
- Rohde, C., Xie, F., 10.1142/S0218202512500522, Math. Models Methods Appl. Sci. 23 (2013), 441-469. (2013) Zbl1270.35112MR3010836DOI10.1142/S0218202512500522
- Stein, E. M., 10.1515/9781400883882, Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095DOI10.1515/9781400883882
- Tan, Z., Zhang, R., 10.1007/s00033-013-0331-3, Z. Angew. Math. Phys. 65 (2014), 279-300. (2014) Zbl1292.35052MR3187946DOI10.1007/s00033-013-0331-3
- Wang, Y., 10.1016/j.jde.2012.03.006, J. Differ. Equations 253 (2012), 273-297. (2012) Zbl1239.35117MR2917409DOI10.1016/j.jde.2012.03.006
- Wang, Z., 10.1016/j.jmaa.2017.03.024, J. Math. Anal. Appl. 452 (2017), 747-779. (2017) Zbl1367.35131MR3632673DOI10.1016/j.jmaa.2017.03.024
- Wang, Z., 10.1016/j.jde.2018.02.035, J. Differ. Equations 265 (2018), 354-388. (2018) Zbl1391.35311MR3782547DOI10.1016/j.jde.2018.02.035
- Wang, J., Xie, F., 10.1016/j.jde.2011.03.011, J. Differ. Equations 251 (2011), 1030-1055. (2011) Zbl1228.35047MR2812581DOI10.1016/j.jde.2011.03.011
- Wang, J., Xie, F., 10.1016/j.na.2011.03.047, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 4138-4151. (2011) Zbl1221.35288MR2802993DOI10.1016/j.na.2011.03.047
- Wang, J., Xie, F., 10.1137/100792792, SIAM J. Math. Anal. 43 (2011), 1189-1204. (2011) Zbl1228.35024MR2800574DOI10.1137/100792792
- Wang, W., Xie, F., 10.1002/mma.1398, Math. Methods Appl. Sci. 34 (2011), 776-791. (2011) Zbl1216.35099MR2815767DOI10.1002/mma.1398
- Wang, W., Xie, F., Yang, X., 10.1016/j.jde.2017.11.007, J. Differ. Equations 264 (2018), 2936-2969. (2018) Zbl1386.76141MR3737859DOI10.1016/j.jde.2017.11.007
- Xie, F., 10.3934/dcdsb.2012.17.1075, Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 1075-1100. (2012) Zbl1241.35015MR2873128DOI10.3934/dcdsb.2012.17.1075
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.