Global existence of smooth solutions for the compressible viscous fluid flow with radiation in 3

Hyejong O; Hakho Hong; Jongsung Kim

Applications of Mathematics (2023)

  • Volume: 68, Issue: 5, page 535-558
  • ISSN: 0862-7940

Abstract

top
This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in [ 0 , ) , provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.

How to cite

top

O, Hyejong, Hong, Hakho, and Kim, Jongsung. "Global existence of smooth solutions for the compressible viscous fluid flow with radiation in $\mathbb {R}^3$." Applications of Mathematics 68.5 (2023): 535-558. <http://eudml.org/doc/299552>.

@article{O2023,
abstract = {This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in $[0,\infty )$, provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.},
author = {O, Hyejong, Hong, Hakho, Kim, Jongsung},
journal = {Applications of Mathematics},
keywords = {radiation hydrodynamics; Navier-Stokes system with radiation; existence; convergence rate},
language = {eng},
number = {5},
pages = {535-558},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Global existence of smooth solutions for the compressible viscous fluid flow with radiation in $\mathbb \{R\}^3$},
url = {http://eudml.org/doc/299552},
volume = {68},
year = {2023},
}

TY - JOUR
AU - O, Hyejong
AU - Hong, Hakho
AU - Kim, Jongsung
TI - Global existence of smooth solutions for the compressible viscous fluid flow with radiation in $\mathbb {R}^3$
JO - Applications of Mathematics
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 5
SP - 535
EP - 558
AB - This paper is concerned with the 3-D Cauchy problem for the compressible viscous fluid flow taking into account the radiation effect. For more general gases including ideal polytropic gas, we prove that there exists a unique smooth solutions in $[0,\infty )$, provided that the initial perturbations are small. Moreover, the time decay rates of the global solutions are obtained for higher-order spatial derivatives of density, velocity, temperature, and the radiative heat flux.
LA - eng
KW - radiation hydrodynamics; Navier-Stokes system with radiation; existence; convergence rate
UR - http://eudml.org/doc/299552
ER -

References

top
  1. Chen, Z., Chai, X., Wang, W., 10.1016/S0252-9602(15)30094-1, Acta Math. Sci., Ser. B, Engl. Ed. 36 (2016), 265-282. (2016) Zbl1363.35243MR3432764DOI10.1016/S0252-9602(15)30094-1
  2. Choe, K.-I., Hong, H., Kim, J., 10.4310/CMS.2020.v18.n6.a7, Commun. Math. Sci. 18 (2020), 1661-1684. (2020) Zbl1467.35237MR4176354DOI10.4310/CMS.2020.v18.n6.a7
  3. Danchin, R., Ducomet, B., 10.1007/s00028-013-0211-5, J. Evol. Equ. 14 (2014), 155-195. (2014) Zbl1302.35313MR3169034DOI10.1007/s00028-013-0211-5
  4. Danchin, R., Ducomet, B., 10.1007/s10231-016-0566-7, Ann. Mat. Pura Appl. (4) 196 (2017), 107-153. (2017) Zbl1369.35055MR3600861DOI10.1007/s10231-016-0566-7
  5. Ducomet, B., Feireisl, E., Nečasová, Š., 10.1016/J.ANIHPC.2011.06.002, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 28 (2011), 797-812. (2011) Zbl1328.76074MR2859928DOI10.1016/J.ANIHPC.2011.06.002
  6. Ducomet, B., Nečasová, Š., 10.1016/j.na.2009.12.005, Nonlinear Anal., Theory Methods Appl., Ser. A 72 (2010), 3258-3274. (2010) Zbl1185.35158MR2587361DOI10.1016/j.na.2009.12.005
  7. Ducomet, B., Nečasová, Š., Global weak solutions to the 1D compressible Navier-Stokes equations with radiation, Commun. Math. Anal. 8 (2010), 23-65. (2010) Zbl1194.35305MR2738332
  8. Ducomet, B., Nečasová, Š., 10.1007/s10231-010-0180-z, Ann. Mat. Pura Appl. (4) 191 (2012), 219-260. (2012) Zbl1238.35085MR2909797DOI10.1007/s10231-010-0180-z
  9. Ducomet, B., Nečasová, Š., 10.1142/S0219530513500036, Anal. Appl., Singap. 11 (2013), Article ID 1350003, 29 pages. (2013) Zbl1261.35102MR3019508DOI10.1142/S0219530513500036
  10. Ducomet, B., Nečasová, Š., 10.1016/j.jmaa.2014.05.043, J. Math. Anal. Appl. 420 (2014), 464-482. (2014) Zbl1296.35140MR3229835DOI10.1016/j.jmaa.2014.05.043
  11. Gao, J., Tao, Q., Yao, Z.-A., 10.1016/j.jde.2016.04.033, J. Differ. Equations 261 (2016), 2334-2383. (2016) Zbl1347.35200MR3505193DOI10.1016/j.jde.2016.04.033
  12. Guo, Y., Wang, Y., 10.1080/03605302.2012.696296, Commun. Partial Differ. Equations 37 (2012), 2165-2208. (2012) Zbl1258.35157MR3005540DOI10.1080/03605302.2012.696296
  13. Hong, H., 10.1016/j.nonrwa.2016.07.005, Nonlinear Anal., Real World Appl. 35 (2017), 175-199. (2017) Zbl1356.35047MR3595322DOI10.1016/j.nonrwa.2016.07.005
  14. Hong, H., Wang, T., 10.1137/16M108536X, SIAM J. Math. Anal. 49 (2017), 2138-2166. (2017) Zbl1371.35196MR3664215DOI10.1137/16M108536X
  15. Jiang, P., 10.3934/dcds.2015.35.3015, Discrete Contin. Dyn. Syst. 35 (2015), 3015-3037. (2015) Zbl1332.76046MR3343552DOI10.3934/dcds.2015.35.3015
  16. Jiang, P., 10.3934/dcds.2017087, Discrete Contin. Dyn. Syst. 37 (2017), 2045-2063. (2017) Zbl1360.76222MR3640587DOI10.3934/dcds.2017087
  17. Jiang, P., 10.1007/s00033-018-0991-0, Z. Angew. Math. Phys. 69 (2018), Article ID 96, 29 pages. (2018) Zbl1404.35358MR3817778DOI10.1007/s00033-018-0991-0
  18. Jiang, S., Ju, Q., Liao, Y., 10.1137/20M1344342, SIAM J. Math. Anal. 53 (2021), 2491-2522. (2021) Zbl1464.35183MR4249060DOI10.1137/20M1344342
  19. Jiang, S., Li, F., Xie, F., 10.1137/140987596, SIAM J. Math. Anal. 47 (2015), 3726-3746. (2015) Zbl1331.35262MR3403137DOI10.1137/140987596
  20. Jiang, S., Xie, F., Zhang, J. W., A global existence result in radiation hydrodynamics, Industrial and Applied Mathematics in China Series in Contemporary Applied Mathematics 10. World Scientific, Hackensack (2009), 25-48. (2009) Zbl1423.76384MR2548855
  21. Jiang, P., Yu, F., 10.1155/2020/4748101, J. Funct. Spaces 2020 (2020), Article ID 4748101, 11 pages. (2020) Zbl1448.35396MR4124574DOI10.1155/2020/4748101
  22. Jiang, P., Zhou, Y., 10.1016/j.jmaa.2018.05.071, J. Math. Anal. Appl. 466 (2018), 324-337. (2018) Zbl1391.35174MR3818119DOI10.1016/j.jmaa.2018.05.071
  23. Lattanzio, C., Mascia, C., Serre, D., 10.1512/iumj.2007.56.3043, Indiana Univ. Math. J. 56 (2007), 2601-2640. (2007) Zbl1132.35062MR2360621DOI10.1512/iumj.2007.56.3043
  24. Li, Y., Zhu, S., 10.1016/j.jde.2014.03.007, J. Differ. Equations 256 (2014), 3943-3980. (2014) Zbl1290.35008MR3190488DOI10.1016/j.jde.2014.03.007
  25. Li, Y., Zhu, S., 10.3934/cpaa.2015.14.1023, Commun. Pure Appl. Anal. 14 (2015), 1023-1052. (2015) Zbl1314.35103MR3320164DOI10.3934/cpaa.2015.14.1023
  26. Li, Y., Zhu, S., 10.1007/s10884-015-9455-9, J. Dyn. Differ. Equations 29 (2017), 549-595. (2017) Zbl1378.35244MR3651601DOI10.1007/s10884-015-9455-9
  27. Lin, C., 10.4310/CMS.2011.v9.n1.a10, Commun. Math. Sci. 9 (2011), 207-223. (2011) Zbl1282.35070MR2836843DOI10.4310/CMS.2011.v9.n1.a10
  28. Lin, C., Coulombel, J.-F., Goudon, T., 10.1016/j.physd.2006.04.012, Physica D 218 (2006), 83-94. (2006) Zbl1096.35086MR2234210DOI10.1016/j.physd.2006.04.012
  29. Lin, C., Coulombel, J.-F., Goudon, T., 10.1016/j.crma.2007.10.029, C. R., Math., Acad. Sci. Paris 345 (2007), 625-628. (2007) Zbl1387.35497MR2371479DOI10.1016/j.crma.2007.10.029
  30. Nguyen, T., Plaza, R. G., Zumbrun, K., 10.1016/j.physd.2010.01.011, Physica D 239 (2010), 428-453. (2010) Zbl1195.37045MR2593039DOI10.1016/j.physd.2010.01.011
  31. Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 13 (1959), 115-162. (1959) Zbl0088.07601MR0109940
  32. Pomraning, G. C., The Equations of Radiation Hydrodynamics, Pergamon Press, Elmsford (1973). (1973) 
  33. Pu, X., Guo, B., 10.3934/krm.2016.9.165, Kinet. Relat. Models 9 (2016), 165-191. (2016) Zbl1330.35339MR3422649DOI10.3934/krm.2016.9.165
  34. Pu, X., Xu, X., 10.1016/j.jmaa.2017.04.053, J. Math. Anal. Appl. 454 (2017), 219-245. (2017) Zbl1369.35067MR3649851DOI10.1016/j.jmaa.2017.04.053
  35. Qin, Y., Feng, B., Zhang, M., 10.1016/j.jde.2012.02.022, J. Differ. Equations 252 (2012), 6175-6213. (2012) Zbl1366.76102MR2911831DOI10.1016/j.jde.2012.02.022
  36. Rohde, C., Wang, W., Xie, F., 10.3934/cpaa.2013.12.2145, Commun. Pure Appl. Anal. 12 (2013), 2145-2171. (2013) Zbl1282.35314MR3015674DOI10.3934/cpaa.2013.12.2145
  37. Rohde, C., Xie, F., 10.1142/S0218202512500522, Math. Models Methods Appl. Sci. 23 (2013), 441-469. (2013) Zbl1270.35112MR3010836DOI10.1142/S0218202512500522
  38. Stein, E. M., 10.1515/9781400883882, Princeton Mathematical Series 30. Princeton University Press, Princeton (1970). (1970) Zbl0207.13501MR0290095DOI10.1515/9781400883882
  39. Tan, Z., Zhang, R., 10.1007/s00033-013-0331-3, Z. Angew. Math. Phys. 65 (2014), 279-300. (2014) Zbl1292.35052MR3187946DOI10.1007/s00033-013-0331-3
  40. Wang, Y., 10.1016/j.jde.2012.03.006, J. Differ. Equations 253 (2012), 273-297. (2012) Zbl1239.35117MR2917409DOI10.1016/j.jde.2012.03.006
  41. Wang, Z., 10.1016/j.jmaa.2017.03.024, J. Math. Anal. Appl. 452 (2017), 747-779. (2017) Zbl1367.35131MR3632673DOI10.1016/j.jmaa.2017.03.024
  42. Wang, Z., 10.1016/j.jde.2018.02.035, J. Differ. Equations 265 (2018), 354-388. (2018) Zbl1391.35311MR3782547DOI10.1016/j.jde.2018.02.035
  43. Wang, J., Xie, F., 10.1016/j.jde.2011.03.011, J. Differ. Equations 251 (2011), 1030-1055. (2011) Zbl1228.35047MR2812581DOI10.1016/j.jde.2011.03.011
  44. Wang, J., Xie, F., 10.1016/j.na.2011.03.047, Nonlinear Anal., Theory Methods Appl., Ser. A 74 (2011), 4138-4151. (2011) Zbl1221.35288MR2802993DOI10.1016/j.na.2011.03.047
  45. Wang, J., Xie, F., 10.1137/100792792, SIAM J. Math. Anal. 43 (2011), 1189-1204. (2011) Zbl1228.35024MR2800574DOI10.1137/100792792
  46. Wang, W., Xie, F., 10.1002/mma.1398, Math. Methods Appl. Sci. 34 (2011), 776-791. (2011) Zbl1216.35099MR2815767DOI10.1002/mma.1398
  47. Wang, W., Xie, F., Yang, X., 10.1016/j.jde.2017.11.007, J. Differ. Equations 264 (2018), 2936-2969. (2018) Zbl1386.76141MR3737859DOI10.1016/j.jde.2017.11.007
  48. Xie, F., 10.3934/dcdsb.2012.17.1075, Discrete Contin. Dyn. Syst., Ser. B 17 (2012), 1075-1100. (2012) Zbl1241.35015MR2873128DOI10.3934/dcdsb.2012.17.1075

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.