Non-fragile observers design for nonlinear systems with unknown Lipschitz constant

Fan Zhou; Yanjun Shen; Zebin Wu

Kybernetika (2024)

  • Issue: 4, page 475-491
  • ISSN: 0023-5954

Abstract

top
In this paper, the problem of globally asymptotically stable non-fragile observer design is investigated for nonlinear systems with unknown Lipschitz constant. Firstly, a definition of globally asymptotically stable non-fragile observer is given for nonlinear systems. Then, an observer function of output is derived by an output filter, and a dynamic high-gain is constructed to deal with unknown Lipschitz constant. Even the observer gains contain diverse large disturbances, the observer errors are proven to converge to the origin based on Lyapunov stability theorem and a matrix inequality. Finally, an experimental simulation is provided to confirm the validity of the proposed method.

How to cite

top

Zhou, Fan, Shen, Yanjun, and Wu, Zebin. "Non-fragile observers design for nonlinear systems with unknown Lipschitz constant." Kybernetika (2024): 475-491. <http://eudml.org/doc/299563>.

@article{Zhou2024,
abstract = {In this paper, the problem of globally asymptotically stable non-fragile observer design is investigated for nonlinear systems with unknown Lipschitz constant. Firstly, a definition of globally asymptotically stable non-fragile observer is given for nonlinear systems. Then, an observer function of output is derived by an output filter, and a dynamic high-gain is constructed to deal with unknown Lipschitz constant. Even the observer gains contain diverse large disturbances, the observer errors are proven to converge to the origin based on Lyapunov stability theorem and a matrix inequality. Finally, an experimental simulation is provided to confirm the validity of the proposed method.},
author = {Zhou, Fan, Shen, Yanjun, Wu, Zebin},
journal = {Kybernetika},
keywords = {non-fragile; observer; high gain; unknown Lipschitz constant; output filter},
language = {eng},
number = {4},
pages = {475-491},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Non-fragile observers design for nonlinear systems with unknown Lipschitz constant},
url = {http://eudml.org/doc/299563},
year = {2024},
}

TY - JOUR
AU - Zhou, Fan
AU - Shen, Yanjun
AU - Wu, Zebin
TI - Non-fragile observers design for nonlinear systems with unknown Lipschitz constant
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 475
EP - 491
AB - In this paper, the problem of globally asymptotically stable non-fragile observer design is investigated for nonlinear systems with unknown Lipschitz constant. Firstly, a definition of globally asymptotically stable non-fragile observer is given for nonlinear systems. Then, an observer function of output is derived by an output filter, and a dynamic high-gain is constructed to deal with unknown Lipschitz constant. Even the observer gains contain diverse large disturbances, the observer errors are proven to converge to the origin based on Lyapunov stability theorem and a matrix inequality. Finally, an experimental simulation is provided to confirm the validity of the proposed method.
LA - eng
KW - non-fragile; observer; high gain; unknown Lipschitz constant; output filter
UR - http://eudml.org/doc/299563
ER -

References

top
  1. Al-Saggaf, U., Bettayeb, M., Djennoune, S., , European J. Control 63 (2022), 1, 164-174. MR4364865DOI
  2. Andreu, C., Ramon, C., , J. Franklin Inst. 359 (2022), 8, 3857-3882. MR4419528DOI
  3. Astolfi, D., Zaccarian, L., Jungers, M., , Systems Control Lett. 148 (2021), 104856. MR4201528DOI
  4. Chen, M., Chen, C., , IEEE Trans. Automat. Control 52 (2007), 12, 2365-2369. MR2374276DOI
  5. Chen, H., Li, Y., 10.1090/S0002-9939-07-09024-7, Proc. Amer. Math. Soc. 135 (2007), 12, 1-7. MR2341942DOI10.1090/S0002-9939-07-09024-7
  6. Chen, C., Qian, C., Sun, Z., Liang, Y., , IEEE Trans. Automat. Control 63 (2018), 7, 2212-2217. MR3820224DOI
  7. Chen, W., Sun, H., Lu, X., 10.1016/j.jfranklin.2022.10.011, J. Franklin inst. 350 (2022), 18, 11186-11207. MR4518727DOI10.1016/j.jfranklin.2022.10.011
  8. Chowdhury, D., Al-Nadawi, Y. K., Tan, X., , Automatica 135 (2022), 109977. MR4336445DOI
  9. Duan, G., High-order system approaches: III. observability and observer design., ACTA Automat. Sinica 46 (2020), 9, 1885-1895. 
  10. Dutta, L., Das, D., , Int. J. Robust Nonlinear Control 33 (2023), 11, 5934-5955. MR4600573DOI
  11. Guo, X., Yang, G., , ACTA Automatica Sinica 35 (2009), 9, 1209-1215. MR2599699DOI
  12. Hua, C., Guan, X., , Physics Lett. A 334 (2005), 5-6, 382-389. DOI
  13. Huang, J., Han, Z., 10.1016/j.apm.2012.01.001, Appl. Math. Modell. 37 (2013), 1-2, 72-81. MR2994167DOI10.1016/j.apm.2012.01.001
  14. Jeong, C. S., Yaz, E. E., Yaz, Y. I., , Math. Computer Modell. 42 (2005), 9-10, 931-938. MR2181289DOI
  15. Zhang, H. Jian. H., Wang, Y., Liu, X., Adaptive state disturbance observer design for nonlinear system with unknown lipschitz constant., Chinese Automation Congress 2015, pp. 880-885. 
  16. Koo, M., Choi, H., , Int. J. Systems Sci. 52 (2021), 10, 2034-2047. MR4286478DOI
  17. Lakshmanan, S., Joo, Y., , Int. J. Robust Nonlinear Control 33 (2023), 10, 5758-5774. MR4599705DOI
  18. Li, G., Xu, D., Zhou, abd S., , ATAC Physica Sinica 53 (2004), 3, 706-709. MR2068906DOI
  19. Li, W., Yao, X., Krstic, M., , Automatica 120 (2020), 109112. MR4118791DOI
  20. Lin, Z., , Automatica 137 (2022), 110124. MR4360247DOI
  21. Lin, L., Shen, Y., , J. Control Theory Appl. 2021. DOI
  22. Liu, Y., Fei, S., Chaos synchronization between the Sprott-B and Sprott-C with linear coupling., ATAC Physica Sinica 53 (2006), 3, 1035-1039. 
  23. Liu, C., Liao, K., Qian, K., Li, Y., Ding, Q., The robust sliding mode observer design for nonlinear system with measurement noise and multiple faults., Systems Engrg. Electron. (2022). 
  24. Marino, R., Tomei, P., Nonlinear Control Design: Geometric, Adaptive and Robust., Prentice Hall, Hertfordshire 1995. Zbl0833.93003
  25. Perruquetti, W., Floquet, T., Moulay, E., , IEEE Trans. Automat. Control 53 (2008), 1, 356-360. MR2391590DOI
  26. Shen, Y., Xia, X., , Automatica 44 (2008), 12, 3152-3156. Zbl1153.93332MR2531419DOI
  27. Thau, F. E., , Int. J. Control 17 (1973), 3, 471-479. DOI
  28. Xiang, Z., Wang, R., Jiang, B., , Circuits Systems Signal Process. 30 (2011), 1, 73-87. MR2769375DOI
  29. Yang, G., Wang, J., , IEEE Trans. Automat. Control 46 (2001), 2, 343-348. MR1814586DOI
  30. Zheng, Q., Xu, S., Zhang, Z., , Appl. Math. Comput. 386 (2020), 125435. MR4114862DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.