Non-fragile observers design for nonlinear systems with unknown Lipschitz constant
Fan Zhou; Yanjun Shen; Zebin Wu
Kybernetika (2024)
- Issue: 4, page 475-491
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topZhou, Fan, Shen, Yanjun, and Wu, Zebin. "Non-fragile observers design for nonlinear systems with unknown Lipschitz constant." Kybernetika (2024): 475-491. <http://eudml.org/doc/299563>.
@article{Zhou2024,
abstract = {In this paper, the problem of globally asymptotically stable non-fragile observer design is investigated for nonlinear systems with unknown Lipschitz constant. Firstly, a definition of globally asymptotically stable non-fragile observer is given for nonlinear systems. Then, an observer function of output is derived by an output filter, and a dynamic high-gain is constructed to deal with unknown Lipschitz constant. Even the observer gains contain diverse large disturbances, the observer errors are proven to converge to the origin based on Lyapunov stability theorem and a matrix inequality. Finally, an experimental simulation is provided to confirm the validity of the proposed method.},
author = {Zhou, Fan, Shen, Yanjun, Wu, Zebin},
journal = {Kybernetika},
keywords = {non-fragile; observer; high gain; unknown Lipschitz constant; output filter},
language = {eng},
number = {4},
pages = {475-491},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Non-fragile observers design for nonlinear systems with unknown Lipschitz constant},
url = {http://eudml.org/doc/299563},
year = {2024},
}
TY - JOUR
AU - Zhou, Fan
AU - Shen, Yanjun
AU - Wu, Zebin
TI - Non-fragile observers design for nonlinear systems with unknown Lipschitz constant
JO - Kybernetika
PY - 2024
PB - Institute of Information Theory and Automation AS CR
IS - 4
SP - 475
EP - 491
AB - In this paper, the problem of globally asymptotically stable non-fragile observer design is investigated for nonlinear systems with unknown Lipschitz constant. Firstly, a definition of globally asymptotically stable non-fragile observer is given for nonlinear systems. Then, an observer function of output is derived by an output filter, and a dynamic high-gain is constructed to deal with unknown Lipschitz constant. Even the observer gains contain diverse large disturbances, the observer errors are proven to converge to the origin based on Lyapunov stability theorem and a matrix inequality. Finally, an experimental simulation is provided to confirm the validity of the proposed method.
LA - eng
KW - non-fragile; observer; high gain; unknown Lipschitz constant; output filter
UR - http://eudml.org/doc/299563
ER -
References
top- Al-Saggaf, U., Bettayeb, M., Djennoune, S., , European J. Control 63 (2022), 1, 164-174. MR4364865DOI
- Andreu, C., Ramon, C., , J. Franklin Inst. 359 (2022), 8, 3857-3882. MR4419528DOI
- Astolfi, D., Zaccarian, L., Jungers, M., , Systems Control Lett. 148 (2021), 104856. MR4201528DOI
- Chen, M., Chen, C., , IEEE Trans. Automat. Control 52 (2007), 12, 2365-2369. MR2374276DOI
- Chen, H., Li, Y., 10.1090/S0002-9939-07-09024-7, Proc. Amer. Math. Soc. 135 (2007), 12, 1-7. MR2341942DOI10.1090/S0002-9939-07-09024-7
- Chen, C., Qian, C., Sun, Z., Liang, Y., , IEEE Trans. Automat. Control 63 (2018), 7, 2212-2217. MR3820224DOI
- Chen, W., Sun, H., Lu, X., 10.1016/j.jfranklin.2022.10.011, J. Franklin inst. 350 (2022), 18, 11186-11207. MR4518727DOI10.1016/j.jfranklin.2022.10.011
- Chowdhury, D., Al-Nadawi, Y. K., Tan, X., , Automatica 135 (2022), 109977. MR4336445DOI
- Duan, G., High-order system approaches: III. observability and observer design., ACTA Automat. Sinica 46 (2020), 9, 1885-1895.
- Dutta, L., Das, D., , Int. J. Robust Nonlinear Control 33 (2023), 11, 5934-5955. MR4600573DOI
- Guo, X., Yang, G., , ACTA Automatica Sinica 35 (2009), 9, 1209-1215. MR2599699DOI
- Hua, C., Guan, X., , Physics Lett. A 334 (2005), 5-6, 382-389. DOI
- Huang, J., Han, Z., 10.1016/j.apm.2012.01.001, Appl. Math. Modell. 37 (2013), 1-2, 72-81. MR2994167DOI10.1016/j.apm.2012.01.001
- Jeong, C. S., Yaz, E. E., Yaz, Y. I., , Math. Computer Modell. 42 (2005), 9-10, 931-938. MR2181289DOI
- Zhang, H. Jian. H., Wang, Y., Liu, X., Adaptive state disturbance observer design for nonlinear system with unknown lipschitz constant., Chinese Automation Congress 2015, pp. 880-885.
- Koo, M., Choi, H., , Int. J. Systems Sci. 52 (2021), 10, 2034-2047. MR4286478DOI
- Lakshmanan, S., Joo, Y., , Int. J. Robust Nonlinear Control 33 (2023), 10, 5758-5774. MR4599705DOI
- Li, G., Xu, D., Zhou, abd S., , ATAC Physica Sinica 53 (2004), 3, 706-709. MR2068906DOI
- Li, W., Yao, X., Krstic, M., , Automatica 120 (2020), 109112. MR4118791DOI
- Lin, Z., , Automatica 137 (2022), 110124. MR4360247DOI
- Lin, L., Shen, Y., , J. Control Theory Appl. 2021. DOI
- Liu, Y., Fei, S., Chaos synchronization between the Sprott-B and Sprott-C with linear coupling., ATAC Physica Sinica 53 (2006), 3, 1035-1039.
- Liu, C., Liao, K., Qian, K., Li, Y., Ding, Q., The robust sliding mode observer design for nonlinear system with measurement noise and multiple faults., Systems Engrg. Electron. (2022).
- Marino, R., Tomei, P., Nonlinear Control Design: Geometric, Adaptive and Robust., Prentice Hall, Hertfordshire 1995. Zbl0833.93003
- Perruquetti, W., Floquet, T., Moulay, E., , IEEE Trans. Automat. Control 53 (2008), 1, 356-360. MR2391590DOI
- Shen, Y., Xia, X., , Automatica 44 (2008), 12, 3152-3156. Zbl1153.93332MR2531419DOI
- Thau, F. E., , Int. J. Control 17 (1973), 3, 471-479. DOI
- Xiang, Z., Wang, R., Jiang, B., , Circuits Systems Signal Process. 30 (2011), 1, 73-87. MR2769375DOI
- Yang, G., Wang, J., , IEEE Trans. Automat. Control 46 (2001), 2, 343-348. MR1814586DOI
- Zheng, Q., Xu, S., Zhang, Z., , Appl. Math. Comput. 386 (2020), 125435. MR4114862DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.