Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
Yoshihiro Mizuta; Tetsu Shimomura
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1201-1217
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMizuta, Yoshihiro, and Shimomura, Tetsu. "Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces." Czechoslovak Mathematical Journal 73.4 (2023): 1201-1217. <http://eudml.org/doc/299564>.
@article{Mizuta2023,
abstract = {Our aim is to establish Sobolev type inequalities for fractional maximal functions $M_\{\mathbb \{H\},\nu \}f$ and Riesz potentials $I_\{\mathbb \{H\},\alpha \}f$ in weighted Morrey spaces of variable exponent on the half space $\mathbb \{H\}$. We also obtain Sobolev type inequalities for a $C^1$ function on $\mathbb \{H\}$. As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents $\Phi (x,t) = t^\{p(x)\} + (b(x) t)^\{q(x)\}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions, $p(x)<q(x)$ for $x \in \{\mathbb \{H\}\} $, and $b(\cdot )$ is nonnegative and Hölder continuous of order $\theta \in (0,1]$.},
author = {Mizuta, Yoshihiro, Shimomura, Tetsu},
journal = {Czechoslovak Mathematical Journal},
keywords = {variable exponent; fractional maximal function; Riesz potential; Sobolev's inequality; weighted Morrey space; double phase functional},
language = {eng},
number = {4},
pages = {1201-1217},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces},
url = {http://eudml.org/doc/299564},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Mizuta, Yoshihiro
AU - Shimomura, Tetsu
TI - Sobolev type inequalities for fractional maximal functions and Riesz potentials in Morrey spaces of variable exponent on half spaces
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1201
EP - 1217
AB - Our aim is to establish Sobolev type inequalities for fractional maximal functions $M_{\mathbb {H},\nu }f$ and Riesz potentials $I_{\mathbb {H},\alpha }f$ in weighted Morrey spaces of variable exponent on the half space $\mathbb {H}$. We also obtain Sobolev type inequalities for a $C^1$ function on $\mathbb {H}$. As an application, we obtain Sobolev type inequality for double phase functionals with variable exponents $\Phi (x,t) = t^{p(x)} + (b(x) t)^{q(x)}$, where $p(\cdot )$ and $q(\cdot )$ satisfy log-Hölder conditions, $p(x)<q(x)$ for $x \in {\mathbb {H}} $, and $b(\cdot )$ is nonnegative and Hölder continuous of order $\theta \in (0,1]$.
LA - eng
KW - variable exponent; fractional maximal function; Riesz potential; Sobolev's inequality; weighted Morrey space; double phase functional
UR - http://eudml.org/doc/299564
ER -
References
top- Adams, D. R., 10.1215/S0012-7094-75-04265-9, Duke Math. J. 42 (1975), 765-778. (1975) Zbl0336.46038MR0458158DOI10.1215/S0012-7094-75-04265-9
- Adams, D. R., Hedberg, L. I., 10.1007/978-3-662-03282-4, Grundlehren der Mathematischen Wissenschaften 314. Springer, Berlin (1995). (1995) Zbl0834.46021MR1411441DOI10.1007/978-3-662-03282-4
- Almeida, A., Hasanov, J., Samko, S., 10.1515/GMJ.2008.195, Georgian Math. J. 15 (2008), 195-208. (2008) Zbl1263.42002MR2428465DOI10.1515/GMJ.2008.195
- Baroni, P., Colombo, M., Mingione, G., 10.1090/spmj/1392, St. Petersbg. Math. J. 27 (2016), 347-379. (2016) Zbl1335.49057MR3570955DOI10.1090/spmj/1392
- Baroni, P., Colombo, M., Mingione, G., 10.1007/s00526-018-1332-z, Calc. Var. Partial Differ. Equ. 57 (2018), Article ID 62, 48 pages. (2018) Zbl1394.49034MR3775180DOI10.1007/s00526-018-1332-z
- Byun, S.-S., Lee, H.-S., 10.1016/j.jmaa.2020.124015, J. Math. Anal. Appl. 501 (2021), Article ID 124015, 31 pages. (2021) Zbl1467.35064MR4258791DOI10.1016/j.jmaa.2020.124015
- Capone, C., Cruz-Uribe, D., Fiorenza, A., 10.4171/RMI/511, Rev. Mat. Iberoam. 23 (2007), 743-770. (2007) Zbl1213.42063MR2414490DOI10.4171/RMI/511
- Colombo, M., Mingione, G., 10.1007/s00205-015-0859-9, Arch. Ration. Mech. Anal. 218 (2015), 219-273. (2015) Zbl1325.49042MR3360738DOI10.1007/s00205-015-0859-9
- Colombo, M., Mingione, G., 10.1007/s00205-014-0785-2, Arch. Ration. Mech. Anal. 215 (2015), 443-496. (2015) Zbl1322.49065MR3294408DOI10.1007/s00205-014-0785-2
- Cruz-Uribe, D. V., Fiorenza, A., 10.1007/978-3-0348-0548-3, Applied and Numerical Harmonic Analysis. Birkhäuser, New York (2013). (2013) Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
- Cruz-Uribe, D., Fiorenza, A., Neugebauer, C. J., 10.1016/j.jmaa.2012.04.044, J. Math. Anal. Appl. 394 (2012), 744-760. (2012) Zbl1298.42021MR2927495DOI10.1016/j.jmaa.2012.04.044
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Fazio, G. Di, Ragusa, M. A., Commutators and Morrey spaces, Boll. Unione Mat. Ital., VII. Ser., A 5 (1991), 323-332. (1991) Zbl0761.42009MR1138545
- Haj{ł}asz, P., Koskela, P., 10.1090/memo/0688, Memoirs of the American Mathematical Society 688. AMS, Providence (2000). (2000) Zbl0954.46022MR1683160DOI10.1090/memo/0688
- Hästö, P., Ok, J., 10.1016/j.jde.2019.03.026, J. Differ. Equations 267 (2019), 2792-2823. (2019) Zbl1420.35087MR3953020DOI10.1016/j.jde.2019.03.026
- Kinnunen, J., Lindqvist, P., 10.1515/crll.1998.095, J. Reine Angew. Math. 503 (1998), 161-167. (1998) Zbl0904.42015MR1650343DOI10.1515/crll.1998.095
- Kinnunen, J., Saksman, E., 10.1112/S0024609303002017, Bull. Lond. Math. Soc. 35 (2003), 529-535. (2003) Zbl1021.42009MR1979008DOI10.1112/S0024609303002017
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.bulsci.2012.03.008, Bull. Sci. Math. 137 (2013), 76-96. (2013) Zbl1267.46045MR3007101DOI10.1016/j.bulsci.2012.03.008
- Maeda, F.-Y., Mizuta, Y., Ohno, T., Shimomura, T., 10.1515/forum-2018-0077, Forum Math. 31 (2019), 517-527. (2019) Zbl1423.46049MR3918454DOI10.1515/forum-2018-0077
- Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.1080/17476933.2010.504837, Complex Var. Elliptic Equ. 56 (2011), 671-695. (2011) Zbl1228.31004MR2832209DOI10.1080/17476933.2010.504837
- Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.1007/s13163-011-0074-7, Rev. Mat. Complut. 25 (2012), 413-434. (2012) Zbl1273.31005MR2931419DOI10.1007/s13163-011-0074-7
- Mizuta, Y., Nakai, E., Ohno, T., Shimomura, T., 10.1016/j.na.2020.111827, Nonlinear Anal., Theory Methods Appl., Ser. A 197 (2020), Article ID 111827, 18 pages. (2020) Zbl1441.31004MR4073513DOI10.1016/j.na.2020.111827
- Mizuta, Y., Ohno, T., Shimomura, T., 10.7153/mia-2018-21-30, Math. Inequal. Appl. 21 (2018), 433-453. (2018) Zbl1388.31009MR3776085DOI10.7153/mia-2018-21-30
- Mizuta, Y., Ohno, T., Shimomura, T., 10.1016/j.jmaa.2020.124360, J. Math. Anal. Appl. 501 (2021), Article ID 124360, 16 pages. (2021) Zbl1478.46028MR4258801DOI10.1016/j.jmaa.2020.124360
- Mizuta, Y., Shimomura, T., 10.2969/jmsj/06020583, J. Math. Soc. Japan 60 (2008), 583-602. (2008) Zbl1161.46305MR2421989DOI10.2969/jmsj/06020583
- Mizuta, Y., Shimomura, T., 10.1016/j.jmaa.2020.124133, J. Math. Anal. Appl. 501 (2021), Article ID 124133, 17 pages. (2021) Zbl1478.46037MR4258797DOI10.1016/j.jmaa.2020.124133
- Mizuta, Y., Shimomura, T., 10.1007/s11117-021-00810-z, Positivity 25 (2021), 1131-1146. (2021) Zbl1481.46030MR4274309DOI10.1007/s11117-021-00810-z
- Mizuta, Y., Shimomura, T., 10.1002/mma.7425, Math. Methods Appl. Sci. 45 (2022), 8631-8654. (2022) MR4475228DOI10.1002/mma.7425
- Mizuta, Y., Shimomura, T., Sobolev type inequalities for fractional maximal functions and Riesz potentials in half spaces, Available at https://arxiv.org/abs/2305.13708 (2023), 22 pages. (2023) MR4274309
- C. B. Morrey, Jr., 10.1090/S0002-9947-1938-1501936-8, Trans. Am. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.1090/S0002-9947-1938-1501936-8
- Ragusa, M. A., Tachikawa, A., 10.1515/anona-2020-0022, Adv. Nonlinear Anal. 9 (2020), 710-728. (2020) Zbl1420.35145MR3985000DOI10.1515/anona-2020-0022
- Sawano, Y., Shimomura, T., 10.1007/s00025-021-01490-7, Result. Math. 76 (2021), Article ID 188, 22 pages. (2021) Zbl1479.42055MR4305494DOI10.1007/s00025-021-01490-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.