Commutative graded--coherent rings
Anass Assarrar; Najib Mahdou; Ünsal Tekir; Suat Koç
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 553-564
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAssarrar, Anass, et al. "Commutative graded-$S$-coherent rings." Czechoslovak Mathematical Journal 73.2 (2023): 553-564. <http://eudml.org/doc/299565>.
@article{Assarrar2023,
abstract = {Recently, motivated by Anderson, Dumitrescu’s $S$-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of $S$-coherent rings, which is the $S$-version of coherent rings. Let $R= \bigoplus _\{\alpha \in G\} R_\{\alpha \}$ be a commutative ring with unity graded by an arbitrary commutative monoid $G$, and $S$ a multiplicatively closed subset of nonzero homogeneous elements of $R$. We define $R$ to be graded-$S$-coherent ring if every finitely generated homogeneous ideal of $R$ is $S$-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-$S$-coherent ring which is not $S$-coherent and as a special case of our study, we give the graded version of the Chase’s characterization of $S$-coherent rings.},
author = {Assarrar, Anass, Mahdou, Najib, Tekir, Ünsal, Koç, Suat},
journal = {Czechoslovak Mathematical Journal},
keywords = {$S$-finite; graded-$S$-coherent module; graded-$S$-coherent ring},
language = {eng},
number = {2},
pages = {553-564},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutative graded-$S$-coherent rings},
url = {http://eudml.org/doc/299565},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Assarrar, Anass
AU - Mahdou, Najib
AU - Tekir, Ünsal
AU - Koç, Suat
TI - Commutative graded-$S$-coherent rings
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 553
EP - 564
AB - Recently, motivated by Anderson, Dumitrescu’s $S$-finiteness, D. Bennis, M. El Hajoui (2018) introduced the notion of $S$-coherent rings, which is the $S$-version of coherent rings. Let $R= \bigoplus _{\alpha \in G} R_{\alpha }$ be a commutative ring with unity graded by an arbitrary commutative monoid $G$, and $S$ a multiplicatively closed subset of nonzero homogeneous elements of $R$. We define $R$ to be graded-$S$-coherent ring if every finitely generated homogeneous ideal of $R$ is $S$-finitely presented. The purpose of this paper is to give the graded version of several results proved in D. Bennis, M. El Hajoui (2018). We show the nontriviality of our generalization by giving an example of a graded-$S$-coherent ring which is not $S$-coherent and as a special case of our study, we give the graded version of the Chase’s characterization of $S$-coherent rings.
LA - eng
KW - $S$-finite; graded-$S$-coherent module; graded-$S$-coherent ring
UR - http://eudml.org/doc/299565
ER -
References
top- Anderson, D. D., Anderson, D. F., Chang, G. W., 10.1080/00927872.2016.1254784, Commun. Algebra 45 (2017), 4018-4029. (2017) Zbl1390.13002MR3627646DOI10.1080/00927872.2016.1254784
- Anderson, D. F., Chang, G. W., Zafrullah, M., 10.1080/00927872.2017.1327595, Commun. Algebra 46 (2018), 792-809. (2018) Zbl1397.13001MR3764897DOI10.1080/00927872.2017.1327595
- Anderson, D. D., Dumitrescu, T., 10.1081/AGB-120013328, Commun. Algebra 30 (2002), 4407-4416. (2002) Zbl1060.13007MR1936480DOI10.1081/AGB-120013328
- Assarrar, A., Mahdou, N., Tekir, Ü., Koç, S., 10.1007/s40574-021-00312-6, Boll. Unione Mat. Ital. 15 (2022), 437-449. (2022) Zbl1497.13002MR4461706DOI10.1007/s40574-021-00312-6
- Bakkari, C., Mahdou, N., Riffi, A., Commutative graded-coherent rings, Indian J. Math. 61 (2019), 421-440. (2019) Zbl1451.13003MR3971513
- Bakkari, C., Mahdou, N., Riffi, A., 10.2989/16073606.2020.1799106, Quaest. Math. 44 (2021), 1371-1391. (2021) Zbl1484.13003MR4345229DOI10.2989/16073606.2020.1799106
- Bennis, D., Hajoui, M. El, 10.4134/JKMS.j170797, J. Korean Math. Soc. 55 (2018), 1499-1512. (2018) Zbl1405.13035MR3883493DOI10.4134/JKMS.j170797
- Bourbaki, N., 10.1007/978-3-540-33850-5, Springer, Berlin (2007), French. (2007) Zbl1111.00001MR0274237DOI10.1007/978-3-540-33850-5
- Chang, G. W., Oh, D. Y., 10.1216/JCA-2018-10-1-45, J. Commut. Algebra 10 (2018), 45-61. (2018) Zbl1400.13007MR3804846DOI10.1216/JCA-2018-10-1-45
- Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Am. Math. Soc. 97 (1960), 457-473. (1960) Zbl0100.26602MR0120260DOI10.1090/S0002-9947-1960-0120260-3
- Gilmer, R., Commutative Semigroup Rings, Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1984). (1984) Zbl0566.20050MR0741678
- Glaz, S., 10.1007/BFb0084570, Lecture Notes in Mathematics 1371. Springer, Berlin (1989). (1989) Zbl0745.13004MR0999133DOI10.1007/BFb0084570
- Huckaba, J. A., Commutative Rings with Zero Divisors, Monographs and Textbooks in Pure and Applied Mathematics 117. Marcel Dekker, New York (1988). (1988) Zbl0637.13001MR0938741
- Kim, D. K., Lim, J. W., 10.3390/math8091532, Mathematics 8 (2020), Article ID 1532, 11 pages. (2020) DOI10.3390/math8091532
- Năstăsescu, C., Oystaeyen, F. Van, 10.1007/b94904, Lecture Notes in Mathematics 1836. Springer, Berlin (2004). (2004) Zbl1043.16017MR2046303DOI10.1007/b94904
- Rush, D. E., 10.1016/S0022-4049(03)00103-8, J. Pure Appl. Algebra 185 (2003), 259-278. (2003) Zbl1084.13007MR2006430DOI10.1016/S0022-4049(03)00103-8
- Soublin, J.-P., 10.1016/0021-8693(70)90050-5, J. Algebra 15 (1970), 455-472 French. (1970) Zbl0198.35803MR0260799DOI10.1016/0021-8693(70)90050-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.