On a sum involving the integral part function

Bo Chen

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 437-444
  • ISSN: 0011-4642

Abstract

top
Let [ t ] be the integral part of a real number t , and let f be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum S f ( x ) = n x f ( [ x / n ] ) , which improves the recent result of J. Stucky (2022).

How to cite

top

Chen, Bo. "On a sum involving the integral part function." Czechoslovak Mathematical Journal 74.2 (2024): 437-444. <http://eudml.org/doc/299574>.

@article{Chen2024,
abstract = {Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _\{n\le x\}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).},
author = {Chen, Bo},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotical formula; exponential sum; exponential pair; integral part},
language = {eng},
number = {2},
pages = {437-444},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a sum involving the integral part function},
url = {http://eudml.org/doc/299574},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Chen, Bo
TI - On a sum involving the integral part function
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 437
EP - 444
AB - Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
LA - eng
KW - asymptotical formula; exponential sum; exponential pair; integral part
UR - http://eudml.org/doc/299574
ER -

References

top
  1. Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
  2. Bordellès, O., 10.1007/978-1-4471-4096-2, Universitext. Springer, London (2012). (2012) Zbl1244.11001MR2952910DOI10.1007/978-1-4471-4096-2
  3. Bordellès, O., Dai, L., Heyman, R., Pan, H., Shparlinski, I. E., 10.1016/j.jnt.2019.01.006, J. Number Theory 202 (2019), 278-297. (2019) Zbl1454.11009MR3958074DOI10.1016/j.jnt.2019.01.006
  4. Graham, S. W., Kolesnik, G., 10.1017/CBO9780511661976, London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). (1991) Zbl0713.11001MR1145488DOI10.1017/CBO9780511661976
  5. Liu, K., Wu, J., Yang, Z., 10.1016/j.indag.2021.09.005, Indag. Math., New Ser. 33 (2022), 388-396. (2022) Zbl1487.11087MR4383117DOI10.1016/j.indag.2021.09.005
  6. Ma, J., Sun, H., 10.1007/s10998-020-00378-3, Period. Math. Hung. 83 (2021), 185-191. (2021) Zbl1499.11293MR4344126DOI10.1007/s10998-020-00378-3
  7. Ma, J., Wu, J., 10.1007/s10998-020-00359-6, Period. Math. Hung. 83 (2021), 39-48. (2021) Zbl1488.11151MR4260147DOI10.1007/s10998-020-00359-6
  8. Mercier, A., Nowak, W. G., 10.1007/BF01295155, Monatsh. Math. 99 (1985), 213-221. (1985) Zbl0555.10027MR0791682DOI10.1007/BF01295155
  9. Stucky, J., 10.1016/j.jnt.2021.09.015, J. Number Theory 238 (2022), 731-739. (2022) Zbl1508.11082MR4430115DOI10.1016/j.jnt.2021.09.015
  10. Wu, J., 10.1007/s10998-019-00300-6, Period. Math. Hung. 80 (2020), 95-102. (2020) Zbl1449.11011MR4059866DOI10.1007/s10998-019-00300-6
  11. Zhai, W., 10.1016/j.jnt.2019.10.003, J. Number Theory 211 (2020), 199-219. (2020) Zbl1437.11119MR4074554DOI10.1016/j.jnt.2019.10.003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.