On a sum involving the integral part function
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 437-444
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Bo. "On a sum involving the integral part function." Czechoslovak Mathematical Journal 74.2 (2024): 437-444. <http://eudml.org/doc/299574>.
@article{Chen2024,
abstract = {Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _\{n\le x\}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).},
author = {Chen, Bo},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotical formula; exponential sum; exponential pair; integral part},
language = {eng},
number = {2},
pages = {437-444},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a sum involving the integral part function},
url = {http://eudml.org/doc/299574},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Chen, Bo
TI - On a sum involving the integral part function
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 437
EP - 444
AB - Let $[t]$ be the integral part of a real number $t$, and let $f$ be the arithmetic function satisfying some simple condition. We establish a new asymptotical formula for the sum $S_f (x)=\sum _{n\le x}f([ x/ n ])$, which improves the recent result of J. Stucky (2022).
LA - eng
KW - asymptotical formula; exponential sum; exponential pair; integral part
UR - http://eudml.org/doc/299574
ER -
References
top- Apostol, T. M., 10.1007/978-1-4757-5579-4, Undergraduate Texts in Mathematics. Springer, New York (1976). (1976) Zbl0335.10001MR0434929DOI10.1007/978-1-4757-5579-4
- Bordellès, O., 10.1007/978-1-4471-4096-2, Universitext. Springer, London (2012). (2012) Zbl1244.11001MR2952910DOI10.1007/978-1-4471-4096-2
- Bordellès, O., Dai, L., Heyman, R., Pan, H., Shparlinski, I. E., 10.1016/j.jnt.2019.01.006, J. Number Theory 202 (2019), 278-297. (2019) Zbl1454.11009MR3958074DOI10.1016/j.jnt.2019.01.006
- Graham, S. W., Kolesnik, G., 10.1017/CBO9780511661976, London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). (1991) Zbl0713.11001MR1145488DOI10.1017/CBO9780511661976
- Liu, K., Wu, J., Yang, Z., 10.1016/j.indag.2021.09.005, Indag. Math., New Ser. 33 (2022), 388-396. (2022) Zbl1487.11087MR4383117DOI10.1016/j.indag.2021.09.005
- Ma, J., Sun, H., 10.1007/s10998-020-00378-3, Period. Math. Hung. 83 (2021), 185-191. (2021) Zbl1499.11293MR4344126DOI10.1007/s10998-020-00378-3
- Ma, J., Wu, J., 10.1007/s10998-020-00359-6, Period. Math. Hung. 83 (2021), 39-48. (2021) Zbl1488.11151MR4260147DOI10.1007/s10998-020-00359-6
- Mercier, A., Nowak, W. G., 10.1007/BF01295155, Monatsh. Math. 99 (1985), 213-221. (1985) Zbl0555.10027MR0791682DOI10.1007/BF01295155
- Stucky, J., 10.1016/j.jnt.2021.09.015, J. Number Theory 238 (2022), 731-739. (2022) Zbl1508.11082MR4430115DOI10.1016/j.jnt.2021.09.015
- Wu, J., 10.1007/s10998-019-00300-6, Period. Math. Hung. 80 (2020), 95-102. (2020) Zbl1449.11011MR4059866DOI10.1007/s10998-019-00300-6
- Zhai, W., 10.1016/j.jnt.2019.10.003, J. Number Theory 211 (2020), 199-219. (2020) Zbl1437.11119MR4074554DOI10.1016/j.jnt.2019.10.003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.