A class of quantum doubles of pointed Hopf algebras of rank one

Hua Sun; Yueming Li

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1319-1331
  • ISSN: 0011-4642

Abstract

top
We construct a class of quantum doubles D ( H D n ) of pointed Hopf algebras of rank one H 𝒟 . We describe the algebra structures of D ( H D n ) by generators with relations. Moreover, we give the comultiplication Δ D , counit ε D and the antipode S D , respectively.

How to cite

top

Sun, Hua, and Li, Yueming. "A class of quantum doubles of pointed Hopf algebras of rank one." Czechoslovak Mathematical Journal 73.4 (2023): 1319-1331. <http://eudml.org/doc/299575>.

@article{Sun2023,
abstract = {We construct a class of quantum doubles $D(H_\{D_n\})$ of pointed Hopf algebras of rank one $H_\{\mathcal \{D\}\}$. We describe the algebra structures of $D(H_\{D_n\})$ by generators with relations. Moreover, we give the comultiplication $\Delta _\{D\}$, counit $\varepsilon _D$ and the antipode $S_\{D\}$, respectively.},
author = {Sun, Hua, Li, Yueming},
journal = {Czechoslovak Mathematical Journal},
keywords = {pointed Hopf algebra; quantum double; rank one},
language = {eng},
number = {4},
pages = {1319-1331},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A class of quantum doubles of pointed Hopf algebras of rank one},
url = {http://eudml.org/doc/299575},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Sun, Hua
AU - Li, Yueming
TI - A class of quantum doubles of pointed Hopf algebras of rank one
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1319
EP - 1331
AB - We construct a class of quantum doubles $D(H_{D_n})$ of pointed Hopf algebras of rank one $H_{\mathcal {D}}$. We describe the algebra structures of $D(H_{D_n})$ by generators with relations. Moreover, we give the comultiplication $\Delta _{D}$, counit $\varepsilon _D$ and the antipode $S_{D}$, respectively.
LA - eng
KW - pointed Hopf algebra; quantum double; rank one
UR - http://eudml.org/doc/299575
ER -

References

top
  1. Chen, H., 10.1080/00927879908826745, Commun. Algebra 27 (1999), 5011-5032. (1999) Zbl0942.16038MR1709261DOI10.1080/00927879908826745
  2. Chen, H., 10.1007/BF02650666, Acta Math. Sin., Engl. Ser. 15 (1999), 225-234. (1999) Zbl0933.16038MR1714075DOI10.1007/BF02650666
  3. Dijkgraaf, R., Pasquier, V., Roche, P., 10.1016/0920-5632(91)90123-V, Nucl. Phys., B, Proc. Suppl. 18 (1990), 60-72. (1990) Zbl0957.81670MR1128130DOI10.1016/0920-5632(91)90123-V
  4. Doi, Y., 10.1080/00927879308824649, Commun. Algebra 21 (1993), 1731-1749. (1993) Zbl0779.16015MR1213985DOI10.1080/00927879308824649
  5. Kassel, C., 10.1007/978-1-4612-0783-2, Graduate Texts in Mathematics 155. Springer, New York (1995). (1995) Zbl0808.17003MR1321145DOI10.1007/978-1-4612-0783-2
  6. Kondo, H., Saito, Y., 10.1016/j.jalgebra.2011.01.010, J. Algebra 330 (2011), 103-129. (2011) Zbl1273.17019MR2774620DOI10.1016/j.jalgebra.2011.01.010
  7. Krop, L., Radford, D. E., 10.1016/j.jalgebra.2006.03.031, J. Algebra 302 (2006), 214-230. (2006) Zbl1126.16028MR2236601DOI10.1016/j.jalgebra.2006.03.031
  8. Lusztig, G., 10.2307/1990988, J. Am. Math. Soc. 3 (1990), 257-296. (1990) Zbl0695.16006MR1013053DOI10.2307/1990988
  9. Montgomery, S., 10.1090/cbms/082, Regional Conference Series in Mathematics. 82. AMS, Providence (1993). (1993) Zbl0793.16029MR1243637DOI10.1090/cbms/082
  10. Panov, A. N., 10.1023/A:1026115004357, Math. Notes 74 (2003), 401-410. (2003) Zbl1071.16035MR2022506DOI10.1023/A:1026115004357
  11. Scherotzke, S., 10.1016/j.jalgebra.2008.01.028, J. Algebra 319 (2008), 2889-2912. (2008) Zbl1149.16033MR2397414DOI10.1016/j.jalgebra.2008.01.028
  12. Suter, R., 10.1007/BF02102012, Commun. Math. Phys. 163 (1994), 359-393. (1994) Zbl0851.17015MR1284788DOI10.1007/BF02102012
  13. Xiao, J., 10.4153/CJM-1997-038-4, Can. J. Math. 49 (1997), 772-787. (1997) Zbl0901.17009MR1471056DOI10.4153/CJM-1997-038-4

NotesEmbed ?

top

You must be logged in to post comments.