On -property of some maximal subgroups of Sylow subgroups of finite groups
Zhengtian Qiu; Jianjun Liu; Guiyun Chen
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 4, page 1349-1358
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topQiu, Zhengtian, Liu, Jianjun, and Chen, Guiyun. "On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups." Czechoslovak Mathematical Journal 73.4 (2023): 1349-1358. <http://eudml.org/doc/299576>.
@article{Qiu2023,
abstract = {Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_\{G / K\} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results.},
author = {Qiu, Zhengtian, Liu, Jianjun, Chen, Guiyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite group; $p$-supersoluble group; $p$-nilpotent group; $\Pi $-property},
language = {eng},
number = {4},
pages = {1349-1358},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups},
url = {http://eudml.org/doc/299576},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Qiu, Zhengtian
AU - Liu, Jianjun
AU - Chen, Guiyun
TI - On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1349
EP - 1358
AB - Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_{G / K} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results.
LA - eng
KW - finite group; $p$-supersoluble group; $p$-nilpotent group; $\Pi $-property
UR - http://eudml.org/doc/299576
ER -
References
top- Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N., 10.1142/S1005386707000041, Algebra Colloq. 14 (2007), 25-36. (2007) Zbl1126.20012MR2278107DOI10.1142/S1005386707000041
- Chen, Z., On a theorem of Srinivasan, J. Southwest Teach. Univ., Ser. B 12 (1987), 1-4 Chinese. (1987) Zbl0732.20008
- Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
- Ezquerro, L. M., Li, X., Li, Y., 10.4171/RSMUP/131-6, Rend. Semin. Mat. Univ. Padova 131 (2014), 77-87. (2014) Zbl1317.20013MR3217752DOI10.4171/RSMUP/131-6
- Gorenstein, D., Finite Groups, Chelsea Publishing, New York (1980). (1980) Zbl0463.20012MR0569209
- Guo, W., 10.1007/978-3-662-45747-4, Springer, Berlin (2015). (2015) Zbl1343.20021MR3331254DOI10.1007/978-3-662-45747-4
- Guo, W., Shum, K.-P., Skiba, A. N., 10.1007/s11202-007-0061-x, Sib. Math. J. 48 (2007), 593-605. (2007) Zbl1153.20304MR2355370DOI10.1007/s11202-007-0061-x
- Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften 134. Springer, Berlin (1967), German. (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92. AMS, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
- Isaacs, I. M., 10.1007/s00013-013-0604-2, Arch. Math. 102 (2014), 1-6. (2014) Zbl1297.20018MR3154151DOI10.1007/s00013-013-0604-2
- Kegel, O. H., 10.1007/BF01195169, Math. Z. 78 (1962), 205-221 German. (1962) Zbl0102.26802MR0147527DOI10.1007/BF01195169
- Li, B., 10.1016/j.jalgebra.2010.12.018, J. Algebra 334 (2011), 321-337. (2011) Zbl1248.20020MR2787667DOI10.1016/j.jalgebra.2010.12.018
- Li, S., He, X., 10.1080/00927870701509370, Commun. Algebra 36 (2008), 2333-2340. (2008) Zbl1146.20015MR2418390DOI10.1080/00927870701509370
- Li, S., Shen, Z., Liu, J., Liu, X., 10.1016/j.jalgebra.2008.01.030, J. Algebra 319 (2008), 4275-4287. (2008) Zbl1152.20019MR2407900DOI10.1016/j.jalgebra.2008.01.030
- Li, Y. M., He, X. L., Wang, Y. M., 10.1007/s10114-010-7609-6, Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222. (2010) Zbl1209.20018MR2727302DOI10.1007/s10114-010-7609-6
- Li, Y., Qiao, S., Su, N., Wang, Y., 10.1016/j.jalgebra.2012.06.025, J. Algebra 371 (2012), 250-261. (2012) Zbl1269.20020MR2975395DOI10.1016/j.jalgebra.2012.06.025
- Liu, J., Li, S., Shen, Z., Liu, X., 10.1007/s13226-011-0009-5, Indian J. Pure Appl. Math. 42 (2011), 145-156. (2011) Zbl1309.20011MR2823263DOI10.1007/s13226-011-0009-5
- Lu, J., Li, S., 10.3770/j.issn:1000-341X.2009.06.005, J. Math. Res. Expo. 29 (2009), 985-991. (2009) Zbl1212.20037MR2590215DOI10.3770/j.issn:1000-341X.2009.06.005
- Peacock, R. M., 10.1016/0021-8693(79)90353-3, J. Algebra 56 (1979), 506-509. (1979) Zbl0399.20012MR0528591DOI10.1016/0021-8693(79)90353-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.