On Π -property of some maximal subgroups of Sylow subgroups of finite groups

Zhengtian Qiu; Jianjun Liu; Guiyun Chen

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 4, page 1349-1358
  • ISSN: 0011-4642

Abstract

top
Let H be a subgroup of a finite group G . We say that H satisfies the Π -property in G if for any chief factor L / K of G , | G / K : N G / K ( H K / K L / K ) | is a π ( H K / K L / K ) -number. We study the influence of some p -subgroups of G satisfying the Π -property on the structure of G , and generalize some known results.

How to cite

top

Qiu, Zhengtian, Liu, Jianjun, and Chen, Guiyun. "On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups." Czechoslovak Mathematical Journal 73.4 (2023): 1349-1358. <http://eudml.org/doc/299576>.

@article{Qiu2023,
abstract = {Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_\{G / K\} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results.},
author = {Qiu, Zhengtian, Liu, Jianjun, Chen, Guiyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {finite group; $p$-supersoluble group; $p$-nilpotent group; $\Pi $-property},
language = {eng},
number = {4},
pages = {1349-1358},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups},
url = {http://eudml.org/doc/299576},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Qiu, Zhengtian
AU - Liu, Jianjun
AU - Chen, Guiyun
TI - On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 4
SP - 1349
EP - 1358
AB - Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_{G / K} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results.
LA - eng
KW - finite group; $p$-supersoluble group; $p$-nilpotent group; $\Pi $-property
UR - http://eudml.org/doc/299576
ER -

References

top
  1. Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N., 10.1142/S1005386707000041, Algebra Colloq. 14 (2007), 25-36. (2007) Zbl1126.20012MR2278107DOI10.1142/S1005386707000041
  2. Chen, Z., On a theorem of Srinivasan, J. Southwest Teach. Univ., Ser. B 12 (1987), 1-4 Chinese. (1987) Zbl0732.20008
  3. Doerk, K., Hawkes, T., 10.1515/9783110870138, De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). (1992) Zbl0753.20001MR1169099DOI10.1515/9783110870138
  4. Ezquerro, L. M., Li, X., Li, Y., 10.4171/RSMUP/131-6, Rend. Semin. Mat. Univ. Padova 131 (2014), 77-87. (2014) Zbl1317.20013MR3217752DOI10.4171/RSMUP/131-6
  5. Gorenstein, D., Finite Groups, Chelsea Publishing, New York (1980). (1980) Zbl0463.20012MR0569209
  6. Guo, W., 10.1007/978-3-662-45747-4, Springer, Berlin (2015). (2015) Zbl1343.20021MR3331254DOI10.1007/978-3-662-45747-4
  7. Guo, W., Shum, K.-P., Skiba, A. N., 10.1007/s11202-007-0061-x, Sib. Math. J. 48 (2007), 593-605. (2007) Zbl1153.20304MR2355370DOI10.1007/s11202-007-0061-x
  8. Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften 134. Springer, Berlin (1967), German. (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
  9. Isaacs, I. M., 10.1090/gsm/092, Graduate Studies in Mathematics 92. AMS, Providence (2008). (2008) Zbl1169.20001MR2426855DOI10.1090/gsm/092
  10. Isaacs, I. M., 10.1007/s00013-013-0604-2, Arch. Math. 102 (2014), 1-6. (2014) Zbl1297.20018MR3154151DOI10.1007/s00013-013-0604-2
  11. Kegel, O. H., 10.1007/BF01195169, Math. Z. 78 (1962), 205-221 German. (1962) Zbl0102.26802MR0147527DOI10.1007/BF01195169
  12. Li, B., 10.1016/j.jalgebra.2010.12.018, J. Algebra 334 (2011), 321-337. (2011) Zbl1248.20020MR2787667DOI10.1016/j.jalgebra.2010.12.018
  13. Li, S., He, X., 10.1080/00927870701509370, Commun. Algebra 36 (2008), 2333-2340. (2008) Zbl1146.20015MR2418390DOI10.1080/00927870701509370
  14. Li, S., Shen, Z., Liu, J., Liu, X., 10.1016/j.jalgebra.2008.01.030, J. Algebra 319 (2008), 4275-4287. (2008) Zbl1152.20019MR2407900DOI10.1016/j.jalgebra.2008.01.030
  15. Li, Y. M., He, X. L., Wang, Y. M., 10.1007/s10114-010-7609-6, Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222. (2010) Zbl1209.20018MR2727302DOI10.1007/s10114-010-7609-6
  16. Li, Y., Qiao, S., Su, N., Wang, Y., 10.1016/j.jalgebra.2012.06.025, J. Algebra 371 (2012), 250-261. (2012) Zbl1269.20020MR2975395DOI10.1016/j.jalgebra.2012.06.025
  17. Liu, J., Li, S., Shen, Z., Liu, X., 10.1007/s13226-011-0009-5, Indian J. Pure Appl. Math. 42 (2011), 145-156. (2011) Zbl1309.20011MR2823263DOI10.1007/s13226-011-0009-5
  18. Lu, J., Li, S., 10.3770/j.issn:1000-341X.2009.06.005, J. Math. Res. Expo. 29 (2009), 985-991. (2009) Zbl1212.20037MR2590215DOI10.3770/j.issn:1000-341X.2009.06.005
  19. Peacock, R. M., 10.1016/0021-8693(79)90353-3, J. Algebra 56 (1979), 506-509. (1979) Zbl0399.20012MR0528591DOI10.1016/0021-8693(79)90353-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.