Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions

Bappaditya Bhowmik; Sambhunath Sen

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 397-414
  • ISSN: 0011-4642

Abstract

top
It is known that if f is holomorphic in the open unit disc 𝔻 of the complex plane and if, for some c > 0 , | f ( z ) | 1 / ( 1 - | z | 2 ) c , z 𝔻 , then | f ' ( z ) | 2 ( c + 1 ) / ( 1 - | z | 2 ) c + 1 . We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in 𝔻 . In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.

How to cite

top

Bhowmik, Bappaditya, and Sen, Sambhunath. "Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions." Czechoslovak Mathematical Journal 74.2 (2024): 397-414. <http://eudml.org/doc/299583>.

@article{Bhowmik2024,
abstract = {It is known that if $f$ is holomorphic in the open unit disc $\{\mathbb \{D\}\}$ of the complex plane and if, for some $c>0$, $|f(z)|\le 1/(1-|z|^2)^c$, $z\in \{\mathbb \{D\}\}$, then $|f^\{\prime \}(z)|\le 2(c+1)/(1-|z|^2)^\{c+1\}$. We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in $\{\mathbb \{D\}\}$. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.},
author = {Bhowmik, Bappaditya, Sen, Sambhunath},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bloch function; meromorphic function; Landau's reduction; Taylor coefficient},
language = {eng},
number = {2},
pages = {397-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions},
url = {http://eudml.org/doc/299583},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Bhowmik, Bappaditya
AU - Sen, Sambhunath
TI - Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 397
EP - 414
AB - It is known that if $f$ is holomorphic in the open unit disc ${\mathbb {D}}$ of the complex plane and if, for some $c>0$, $|f(z)|\le 1/(1-|z|^2)^c$, $z\in {\mathbb {D}}$, then $|f^{\prime }(z)|\le 2(c+1)/(1-|z|^2)^{c+1}$. We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in ${\mathbb {D}}$. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.
LA - eng
KW - Bloch function; meromorphic function; Landau's reduction; Taylor coefficient
UR - http://eudml.org/doc/299583
ER -

References

top
  1. Ahlfors, L. V., Grunsky, H., 10.1007/BF01160101, Math. Z. 42 (1937), 671-673 German. (1937) Zbl0016.30902MR1545698DOI10.1007/BF01160101
  2. Anderson, J. M., Clunie, J., Pommerenke, C., 10.1515/crll.1974.270.12, J. Reine Angew. Math. 270 (1974), 12-37. (1974) Zbl0292.30030MR0361090DOI10.1515/crll.1974.270.12
  3. Bhowmik, B., Sen, S., 10.4153/S0008439523000346, Can. Math. Bull. 66 (2023), 1269-1273. (2023) Zbl1526.30037MR4658218DOI10.4153/S0008439523000346
  4. Bhowmik, B., Sen, S., 10.1007/s00605-023-01839-w, Monatsh. Math. 201 (2023), 359-373. (2023) Zbl1515.30072MR4581493DOI10.1007/s00605-023-01839-w
  5. Bloch, A., Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation, C.R. Acad. Sci. Paris 178 (1924), 2051-2052 French 9999JFM99999 50.0217.02. (1924) MR1508386
  6. Bloch, A., 10.5802/afst.335, Ann. Fac. Sci. Univ. Toulouse, III. Ser. 17 (1925), 1-22 French 9999JFM99999 52.0324.02. (1925) MR1508386DOI10.5802/afst.335
  7. Bonk, M., Extremalprobleme bei Bloch-Funktionen: Ph. D. Thesis, Technische Universität Braunschweig, Braunschweig (1988), German. (1988) Zbl0663.30030
  8. Chen, H., Gauthier, P. M., 10.1007/BF02787110, J. Anal. Math. 69 (1996), 275-291. (1996) Zbl0864.30025MR1428103DOI10.1007/BF02787110
  9. Duren, P. L., Shaprio, H. S., Shields, A. L., 10.1215/S0012-7094-66-03328-X, Duke Math. J. 33 (1966), 247-254. (1966) Zbl0174.37501MR0199359DOI10.1215/S0012-7094-66-03328-X
  10. Graham, I., Kohr, G., 10.1201/9780203911624, Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). (2003) Zbl1042.30001MR2017933DOI10.1201/9780203911624
  11. Kayumov, I. R., Wirths, K.-J., 10.1007/s13324-019-00303-z, Anal. Math. Phys. 9 (2019), 1069-1085. (2019) Zbl1430.30017MR4014857DOI10.1007/s13324-019-00303-z
  12. Kayumov, I. R., Wirths, K.-J., 10.1007/s00605-019-01321-6, Monatsh. Math. 190 (2019), 123-135. (2019) Zbl1420.30015MR3998335DOI10.1007/s00605-019-01321-6
  13. Kayumov, I. R., Wirths, K.-J., 10.1007/s00009-020-01519-1, Mediterr. J. Math. 17 (2020), Article ID 83, 9 pages. (2020) Zbl1441.30049MR4099644DOI10.1007/s00009-020-01519-1
  14. Liu, M.-C., 10.1007/BF01213864, Math. Z. 132 (1973), 205-208. (1973) Zbl0257.30001MR0323999DOI10.1007/BF01213864
  15. Pommerenke, C., 10.1112/jlms/2.Part_4.689, J. Lond. Math. Soc., II. Ser. 2 (1970), 689-695. (1970) Zbl0199.39803MR0284574DOI10.1112/jlms/2.Part_4.689
  16. 10.1090/S0002-9904-1965-11414-8, Bull. Am. Math. Soc. 71 (1965), 855-857. (1965) MR1566376DOI10.1090/S0002-9904-1965-11414-8
  17. Raupach, E., Eine Abschätzungsmethode für die reellwertigen Lösungen der Differentialgleichung Δ α = - 4 / ( 1 - z z ¯ ) 2 , Bonn. Math. Schr. 9 (1960), 124 pages German. (1960) Zbl0124.04201MR0125234
  18. Robertson, M. S., 10.1090/S0002-9939-1971-0281901-6, Proc. Am. Math. Soc. 28 (1971), 551-556. (1971) Zbl0222.30022MR0281901DOI10.1090/S0002-9939-1971-0281901-6
  19. Wirths, K.-J., 10.1007/BF01226108, Arch. Math. 30 (1978), 606-612 German. (1978) Zbl0373.30016MR0492223DOI10.1007/BF01226108
  20. Zhaou, R., 10.1016/S0252-9602(17)30811-1, Acta Math. Sci. 16 (1996), 349-360. (1996) Zbl0938.30024MR1415692DOI10.1016/S0252-9602(17)30811-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.