Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions
Bappaditya Bhowmik; Sambhunath Sen
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 397-414
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBhowmik, Bappaditya, and Sen, Sambhunath. "Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions." Czechoslovak Mathematical Journal 74.2 (2024): 397-414. <http://eudml.org/doc/299583>.
@article{Bhowmik2024,
abstract = {It is known that if $f$ is holomorphic in the open unit disc $\{\mathbb \{D\}\}$ of the complex plane and if, for some $c>0$, $|f(z)|\le 1/(1-|z|^2)^c$, $z\in \{\mathbb \{D\}\}$, then $|f^\{\prime \}(z)|\le 2(c+1)/(1-|z|^2)^\{c+1\}$. We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in $\{\mathbb \{D\}\}$. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.},
author = {Bhowmik, Bappaditya, Sen, Sambhunath},
journal = {Czechoslovak Mathematical Journal},
keywords = {Bloch function; meromorphic function; Landau's reduction; Taylor coefficient},
language = {eng},
number = {2},
pages = {397-414},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions},
url = {http://eudml.org/doc/299583},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Bhowmik, Bappaditya
AU - Sen, Sambhunath
TI - Bounds for the derivative of certain meromorphic functions and on meromorphic Bloch-type functions
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 397
EP - 414
AB - It is known that if $f$ is holomorphic in the open unit disc ${\mathbb {D}}$ of the complex plane and if, for some $c>0$, $|f(z)|\le 1/(1-|z|^2)^c$, $z\in {\mathbb {D}}$, then $|f^{\prime }(z)|\le 2(c+1)/(1-|z|^2)^{c+1}$. We consider a meromorphic analogue of this result. Furthermore, we introduce and study the class of meromorphic Bloch-type functions that possess a nonzero simple pole in ${\mathbb {D}}$. In particular, we obtain bounds for the modulus of the Taylor coefficients of functions in this class.
LA - eng
KW - Bloch function; meromorphic function; Landau's reduction; Taylor coefficient
UR - http://eudml.org/doc/299583
ER -
References
top- Ahlfors, L. V., Grunsky, H., 10.1007/BF01160101, Math. Z. 42 (1937), 671-673 German. (1937) Zbl0016.30902MR1545698DOI10.1007/BF01160101
- Anderson, J. M., Clunie, J., Pommerenke, C., 10.1515/crll.1974.270.12, J. Reine Angew. Math. 270 (1974), 12-37. (1974) Zbl0292.30030MR0361090DOI10.1515/crll.1974.270.12
- Bhowmik, B., Sen, S., 10.4153/S0008439523000346, Can. Math. Bull. 66 (2023), 1269-1273. (2023) Zbl1526.30037MR4658218DOI10.4153/S0008439523000346
- Bhowmik, B., Sen, S., 10.1007/s00605-023-01839-w, Monatsh. Math. 201 (2023), 359-373. (2023) Zbl1515.30072MR4581493DOI10.1007/s00605-023-01839-w
- Bloch, A., Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation, C.R. Acad. Sci. Paris 178 (1924), 2051-2052 French 9999JFM99999 50.0217.02. (1924) MR1508386
- Bloch, A., 10.5802/afst.335, Ann. Fac. Sci. Univ. Toulouse, III. Ser. 17 (1925), 1-22 French 9999JFM99999 52.0324.02. (1925) MR1508386DOI10.5802/afst.335
- Bonk, M., Extremalprobleme bei Bloch-Funktionen: Ph. D. Thesis, Technische Universität Braunschweig, Braunschweig (1988), German. (1988) Zbl0663.30030
- Chen, H., Gauthier, P. M., 10.1007/BF02787110, J. Anal. Math. 69 (1996), 275-291. (1996) Zbl0864.30025MR1428103DOI10.1007/BF02787110
- Duren, P. L., Shaprio, H. S., Shields, A. L., 10.1215/S0012-7094-66-03328-X, Duke Math. J. 33 (1966), 247-254. (1966) Zbl0174.37501MR0199359DOI10.1215/S0012-7094-66-03328-X
- Graham, I., Kohr, G., 10.1201/9780203911624, Pure and Applied Mathematics 255. Marcel Dekker, New York (2003). (2003) Zbl1042.30001MR2017933DOI10.1201/9780203911624
- Kayumov, I. R., Wirths, K.-J., 10.1007/s13324-019-00303-z, Anal. Math. Phys. 9 (2019), 1069-1085. (2019) Zbl1430.30017MR4014857DOI10.1007/s13324-019-00303-z
- Kayumov, I. R., Wirths, K.-J., 10.1007/s00605-019-01321-6, Monatsh. Math. 190 (2019), 123-135. (2019) Zbl1420.30015MR3998335DOI10.1007/s00605-019-01321-6
- Kayumov, I. R., Wirths, K.-J., 10.1007/s00009-020-01519-1, Mediterr. J. Math. 17 (2020), Article ID 83, 9 pages. (2020) Zbl1441.30049MR4099644DOI10.1007/s00009-020-01519-1
- Liu, M.-C., 10.1007/BF01213864, Math. Z. 132 (1973), 205-208. (1973) Zbl0257.30001MR0323999DOI10.1007/BF01213864
- Pommerenke, C., 10.1112/jlms/2.Part_4.689, J. Lond. Math. Soc., II. Ser. 2 (1970), 689-695. (1970) Zbl0199.39803MR0284574DOI10.1112/jlms/2.Part_4.689
- 10.1090/S0002-9904-1965-11414-8, Bull. Am. Math. Soc. 71 (1965), 855-857. (1965) MR1566376DOI10.1090/S0002-9904-1965-11414-8
- Raupach, E., Eine Abschätzungsmethode für die reellwertigen Lösungen der Differentialgleichung , Bonn. Math. Schr. 9 (1960), 124 pages German. (1960) Zbl0124.04201MR0125234
- Robertson, M. S., 10.1090/S0002-9939-1971-0281901-6, Proc. Am. Math. Soc. 28 (1971), 551-556. (1971) Zbl0222.30022MR0281901DOI10.1090/S0002-9939-1971-0281901-6
- Wirths, K.-J., 10.1007/BF01226108, Arch. Math. 30 (1978), 606-612 German. (1978) Zbl0373.30016MR0492223DOI10.1007/BF01226108
- Zhaou, R., 10.1016/S0252-9602(17)30811-1, Acta Math. Sci. 16 (1996), 349-360. (1996) Zbl0938.30024MR1415692DOI10.1016/S0252-9602(17)30811-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.