Remark on regularity criterion for weak solutions to the shear thinning fluids
Mathematica Bohemica (2024)
- Volume: 149, Issue: 3, page 287-294
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topKim, Jae-Myoung. "Remark on regularity criterion for weak solutions to the shear thinning fluids." Mathematica Bohemica 149.3 (2024): 287-294. <http://eudml.org/doc/299584>.
@article{Kim2024,
abstract = {J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\mathbb \{R\}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.},
author = {Kim, Jae-Myoung},
journal = {Mathematica Bohemica},
keywords = {shear thinning fluids; regularity criterion},
language = {eng},
number = {3},
pages = {287-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remark on regularity criterion for weak solutions to the shear thinning fluids},
url = {http://eudml.org/doc/299584},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Kim, Jae-Myoung
TI - Remark on regularity criterion for weak solutions to the shear thinning fluids
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 287
EP - 294
AB - J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\mathbb {R}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.
LA - eng
KW - shear thinning fluids; regularity criterion
UR - http://eudml.org/doc/299584
ER -
References
top- Alghamdi, A. M., Gala, S., Ragusa, M. A., Yang, J. Q., 10.1007/s40314-020-01281-w, Comput. Appl. Math. 39 (2020), Article ID 234, 9 pages. (2020) Zbl1463.35138MR4132926DOI10.1007/s40314-020-01281-w
- Astarita, G., Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London (1974). (1974)
- Bae, H.-O., Choe, H. J., Kim, D. W., Regularity and singularity of weak solutions to Ostwald-de Waele flows, J. Korean Math. Soc. 37 (2000), 957-975. (2000) Zbl0977.76005MR1803282
- Berselli, L. C., Diening, L., Růžička, M., 10.1007/s00021-008-0277-y, J. Math. Fluid Mech. 12 (2010), 101-132. (2010) Zbl1261.35118MR2602916DOI10.1007/s00021-008-0277-y
- Böhme, G., Non-Newtonian Fluid Mechanics, North-Holland Series in Applied Mathematics and Mechanics 31. North-Holland, Amsterdam (1987). (1987) Zbl0713.76004MR0882542
- Bosia, S., Pata, V., Robinson, J. C., 10.1007/s00021-014-0182-5, J. Math. Fluid Mech. 16 (2014), 721-725. (2014) Zbl1307.35186MR3267544DOI10.1007/s00021-014-0182-5
- Diening, L., Růžička, M., Wolf, J., 10.2422/2036-2145.2010.1.01, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. (2010) Zbl1253.76017MR2668872DOI10.2422/2036-2145.2010.1.01
- Krylov, N. V., 10.1090/gsm/096, Graduate Studies in Mathematics 96. AMS, Providence (2008). (2008) Zbl1147.35001MR2435520DOI10.1090/gsm/096
- Ladyzhenskaya, O. A., New equations for the description of the motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Tr. Mat. Inst. Steklova 102 (1967), 85-104 Russian. (1967) Zbl0202.37802MR0226907
- Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969). (1969) Zbl0184.52603MR0254401
- Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Loayza, M., Rojas-Medar, M. A., 10.1063/1.4942047, J. Math. Phys. 57 (2016), Article ID 021512, 6 pages. (2016) Zbl1342.35223MR3462971DOI10.1063/1.4942047
- Málek, J., Nečas, J., Rokyta, M., Růžička, M., 10.1007/978-1-4899-6824-1, Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). (1996) Zbl0851.35002MR1409366DOI10.1007/978-1-4899-6824-1
- Málek, J., Rajagopal, K. R., 10.1016/S1874-5717(06)80008-3, Evolutionary Equations. Volume II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 371-459. (2005) Zbl1095.35027MR2182831DOI10.1016/S1874-5717(06)80008-3
- O'Neil, R., 10.1215/S0012-7094-63-03015-1, Duke Math. J. 30 (1963), 129-142. (1963) Zbl0178.47701MR0146673DOI10.1215/S0012-7094-63-03015-1
- Pineau, B., Yu, X., 10.1007/s00021-018-0388-z, J. Math. Fluid Mech. 20 (2018), 1737-1744. (2018) Zbl1419.35153MR3877494DOI10.1007/s00021-018-0388-z
- Pokorný, M., 10.21136/AM.1996.134320, Appl. Math., Praha 41 (1996), 169-201. (1996) Zbl0863.76003MR1382464DOI10.21136/AM.1996.134320
- Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
- Yang, J., 10.1016/j.camwa.2019.01.017, Comput. Math. Appl. 77 (2019), 2854-2858. (2019) Zbl1442.76011MR3945092DOI10.1016/j.camwa.2019.01.017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.