Remark on regularity criterion for weak solutions to the shear thinning fluids

Jae-Myoung Kim

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 287-294
  • ISSN: 0862-7959

Abstract

top
J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space 3 via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.

How to cite

top

Kim, Jae-Myoung. "Remark on regularity criterion for weak solutions to the shear thinning fluids." Mathematica Bohemica 149.3 (2024): 287-294. <http://eudml.org/doc/299584>.

@article{Kim2024,
abstract = {J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\mathbb \{R\}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.},
author = {Kim, Jae-Myoung},
journal = {Mathematica Bohemica},
keywords = {shear thinning fluids; regularity criterion},
language = {eng},
number = {3},
pages = {287-294},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Remark on regularity criterion for weak solutions to the shear thinning fluids},
url = {http://eudml.org/doc/299584},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Kim, Jae-Myoung
TI - Remark on regularity criterion for weak solutions to the shear thinning fluids
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 287
EP - 294
AB - J. Q. Yang (2019) established a regularity criterion for the 3D shear thinning fluids in the whole space $\mathbb {R}^3$ via two velocity components. The goal of this short note is to extend this result in viewpoint of Lorentz space.
LA - eng
KW - shear thinning fluids; regularity criterion
UR - http://eudml.org/doc/299584
ER -

References

top
  1. Alghamdi, A. M., Gala, S., Ragusa, M. A., Yang, J. Q., 10.1007/s40314-020-01281-w, Comput. Appl. Math. 39 (2020), Article ID 234, 9 pages. (2020) Zbl1463.35138MR4132926DOI10.1007/s40314-020-01281-w
  2. Astarita, G., Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London (1974). (1974) 
  3. Bae, H.-O., Choe, H. J., Kim, D. W., Regularity and singularity of weak solutions to Ostwald-de Waele flows, J. Korean Math. Soc. 37 (2000), 957-975. (2000) Zbl0977.76005MR1803282
  4. Berselli, L. C., Diening, L., Růžička, M., 10.1007/s00021-008-0277-y, J. Math. Fluid Mech. 12 (2010), 101-132. (2010) Zbl1261.35118MR2602916DOI10.1007/s00021-008-0277-y
  5. Böhme, G., Non-Newtonian Fluid Mechanics, North-Holland Series in Applied Mathematics and Mechanics 31. North-Holland, Amsterdam (1987). (1987) Zbl0713.76004MR0882542
  6. Bosia, S., Pata, V., Robinson, J. C., 10.1007/s00021-014-0182-5, J. Math. Fluid Mech. 16 (2014), 721-725. (2014) Zbl1307.35186MR3267544DOI10.1007/s00021-014-0182-5
  7. Diening, L., Růžička, M., Wolf, J., 10.2422/2036-2145.2010.1.01, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 9 (2010), 1-46. (2010) Zbl1253.76017MR2668872DOI10.2422/2036-2145.2010.1.01
  8. Krylov, N. V., 10.1090/gsm/096, Graduate Studies in Mathematics 96. AMS, Providence (2008). (2008) Zbl1147.35001MR2435520DOI10.1090/gsm/096
  9. Ladyzhenskaya, O. A., New equations for the description of the motion of viscous incompressible fluids and solvability in the large of boundary value problems for them, Tr. Mat. Inst. Steklova 102 (1967), 85-104 Russian. (1967) Zbl0202.37802MR0226907
  10. Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York (1969). (1969) Zbl0184.52603MR0254401
  11. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Etudes mathematiques. Dunod, Paris (1969), French. (1969) Zbl0189.40603MR0259693
  12. Loayza, M., Rojas-Medar, M. A., 10.1063/1.4942047, J. Math. Phys. 57 (2016), Article ID 021512, 6 pages. (2016) Zbl1342.35223MR3462971DOI10.1063/1.4942047
  13. Málek, J., Nečas, J., Rokyta, M., Růžička, M., 10.1007/978-1-4899-6824-1, Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). (1996) Zbl0851.35002MR1409366DOI10.1007/978-1-4899-6824-1
  14. Málek, J., Rajagopal, K. R., 10.1016/S1874-5717(06)80008-3, Evolutionary Equations. Volume II Handbook of Differential Equations. Elsevier, Amsterdam (2005), 371-459. (2005) Zbl1095.35027MR2182831DOI10.1016/S1874-5717(06)80008-3
  15. O'Neil, R., 10.1215/S0012-7094-63-03015-1, Duke Math. J. 30 (1963), 129-142. (1963) Zbl0178.47701MR0146673DOI10.1215/S0012-7094-63-03015-1
  16. Pineau, B., Yu, X., 10.1007/s00021-018-0388-z, J. Math. Fluid Mech. 20 (2018), 1737-1744. (2018) Zbl1419.35153MR3877494DOI10.1007/s00021-018-0388-z
  17. Pokorný, M., 10.21136/AM.1996.134320, Appl. Math., Praha 41 (1996), 169-201. (1996) Zbl0863.76003MR1382464DOI10.21136/AM.1996.134320
  18. Triebel, H., 10.1007/978-3-0346-0416-1, Monographs in Mathematics 78. Birkhäuser, Basel (1983). (1983) Zbl0546.46027MR0781540DOI10.1007/978-3-0346-0416-1
  19. Yang, J., 10.1016/j.camwa.2019.01.017, Comput. Math. Appl. 77 (2019), 2854-2858. (2019) Zbl1442.76011MR3945092DOI10.1016/j.camwa.2019.01.017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.