Images of locally nilpotent derivations of bivariate polynomial algebras over a domain

Xiaosong Sun; Beini Wang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 599-610
  • ISSN: 0011-4642

Abstract

top
We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let R be a domain containing a field of characteristic zero. We prove that, when R is a one-dimensional unique factorization domain, the image of any locally nilpotent R -derivation of the bivariate polynomial algebra R [ x , y ] is a Mathieu-Zhao subspace. Moreover, we prove that, when R is a Dedekind domain, the image of a locally nilpotent R -derivation of R [ x , y ] with some additional conditions is a Mathieu-Zhao subspace.

How to cite

top

Sun, Xiaosong, and Wang, Beini. "Images of locally nilpotent derivations of bivariate polynomial algebras over a domain." Czechoslovak Mathematical Journal 74.2 (2024): 599-610. <http://eudml.org/doc/299587>.

@article{Sun2024,
abstract = {We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.},
author = {Sun, Xiaosong, Wang, Beini},
journal = {Czechoslovak Mathematical Journal},
keywords = {locally nilpotent derivation; Jacobian conjecture; LND conjecture; Mathieu-Zhao subspace},
language = {eng},
number = {2},
pages = {599-610},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Images of locally nilpotent derivations of bivariate polynomial algebras over a domain},
url = {http://eudml.org/doc/299587},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Sun, Xiaosong
AU - Wang, Beini
TI - Images of locally nilpotent derivations of bivariate polynomial algebras over a domain
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 599
EP - 610
AB - We study the LND conjecture concerning the images of locally nilpotent derivations, which arose from the Jacobian conjecture. Let $R$ be a domain containing a field of characteristic zero. We prove that, when $R$ is a one-dimensional unique factorization domain, the image of any locally nilpotent $R$-derivation of the bivariate polynomial algebra $R[x,y]$ is a Mathieu-Zhao subspace. Moreover, we prove that, when $R$ is a Dedekind domain, the image of a locally nilpotent $R$-derivation of $R[x,y]$ with some additional conditions is a Mathieu-Zhao subspace.
LA - eng
KW - locally nilpotent derivation; Jacobian conjecture; LND conjecture; Mathieu-Zhao subspace
UR - http://eudml.org/doc/299587
ER -

References

top
  1. Adjamagbo, P. K., Essen, A. van den, A proof of the equivalence of the Dixmier, Jacobian and Poisson conjectures, Acta Math. Vietnam. 32 (2007), 205-214. (2007) Zbl1137.14046MR2368008
  2. Atiyah, M. F., Macdonald, I. G., 10.1201/9780429493621, Addison-Wesley, Reading (1969). (1969) Zbl0175.03601MR0242802DOI10.1201/9780429493621
  3. Bass, H., Connel, E. H., Wright, D., 10.1090/S0273-0979-1982-15032-7, Bull. Am. Math. Soc., New Ser. 7 (1982), 287-330. (1982) Zbl0539.13012MR0663785DOI10.1090/S0273-0979-1982-15032-7
  4. Belov-Kanel, A., Kontsevich, M., 10.17323/1609-4514-2007-7-2-209-218, Mosc. Math. J. 7 (2007), 209-218. (2007) Zbl1128.16014MR2337879DOI10.17323/1609-4514-2007-7-2-209-218
  5. Bhatwadekar, S., Dutta, A. K., 10.1090/S0002-9947-97-01946-6, Trans. Am. Math. Soc. 349 (1997), 3303-3319. (1997) Zbl0883.13006MR1422595DOI10.1090/S0002-9947-97-01946-6
  6. Francoise, J. P., Pakovich, F., Yomdin, Y., Zhao, W., 10.1016/j.bulsci.2010.06.002, Bull. Sci. Math. 135 (2011), 10-32. (2011) Zbl1217.44008MR2764951DOI10.1016/j.bulsci.2010.06.002
  7. Freudenburg, G., 10.1007/978-3-662-55350-3, Encyclopaedia of Mathematical Sciences 136. Invariant Theory and Algebraic Transformation Groups 7. Springer, Berlin (2017). (2017) Zbl1391.13001MR3700208DOI10.1007/978-3-662-55350-3
  8. Liu, D., Sun, X., 10.1017/S0004972719000546, Bull. Aust. Math. Soc. 101 (2020), 71-79. (2020) Zbl1430.14113MR4052910DOI10.1017/S0004972719000546
  9. Mathieu, O., Some conjectures about invariant theory and their applications, Algèbre noncommutative, groupes quantiques et invariants Séminaires et Congrès 2. Société Mathématique de France, Paris (1997), 263-279. (1997) Zbl0889.22008MR1601155
  10. Shestakov, I. P., Umirbaev, U. U., 10.1090/S0894-0347-03-00438-7, J. Am. Math. Soc. 17 (2004), 181-196. (2004) Zbl1044.17014MR2015333DOI10.1090/S0894-0347-03-00438-7
  11. Sun, X., 10.1016/j.jalgebra.2017.09.020, J. Algebra 492 (2017), 414-418. (2017) Zbl1386.14208MR3709158DOI10.1016/j.jalgebra.2017.09.020
  12. Sun, X., Liu, D., 10.1016/j.jalgebra.2020.10.025, J. Algebra 569 (2021), 401-415. (2021) Zbl1451.14172MR4187241DOI10.1016/j.jalgebra.2020.10.025
  13. Sun, X., Wang, B., 10.1017/S000497272300059X, Bull. Aust. Math. Soc. 108 (2023), 412-421. (2023) Zbl07764668MR4665220DOI10.1017/S000497272300059X
  14. Tsuchimoto, Y., Endomorphisms of Weyl algebra and p -curvatures, Osaka J. Math. 42 (2005), 435-452. (2005) Zbl1105.16024MR2147727
  15. Essen, A. van den, 10.1007/978-3-0348-8440-2, Progress in Mathematics 190. Birkhäuser, Basel (2000). (2000) Zbl0962.14037MR1790619DOI10.1007/978-3-0348-8440-2
  16. Essen, A. van den, Sun, X., 10.1016/j.jpaa.2017.12.003, J. Pure Appl. Algebra 222 (2018), 3219-3223. (2018) Zbl1454.13046MR3795641DOI10.1016/j.jpaa.2017.12.003
  17. Essen, A. van den, Willems, R., Zhao, W., 10.1016/j.jpaa.2014.12.024, J. Pure Appl. Algebra 219 (2015), 3847-3861. (2015) Zbl1317.33007MR3335985DOI10.1016/j.jpaa.2014.12.024
  18. Essen, A. van den, Wright, D., Zhao, W., 10.1016/j.jpaa.2010.12.002, J. Pure Appl. Algebra 215 (2011), 2130-2134. (2011) Zbl1229.13022MR2786603DOI10.1016/j.jpaa.2010.12.002
  19. Essen, A. van den, Wright, D., Zhao, W., 10.1016/j.jalgebra.2011.04.036, J. Algebra 340 (2011), 211-224. (2011) Zbl1235.14057MR2813570DOI10.1016/j.jalgebra.2011.04.036
  20. Wright, D., The Jacobian conjecture as a problem in combinatorics, Affine Algebraic Geometry Osaka University Press, Osaka (2007), 483-503. (2007) Zbl1129.14087MR2330486
  21. Zhao, W., 10.1016/j.jpaa.2009.10.007, J. Pure Appl. Algebra 214 (2010), 1200-1216. (2010) Zbl1205.33017MR2586998DOI10.1016/j.jpaa.2009.10.007
  22. Zhao, W., 10.1016/j.jalgebra.2010.04.022, J. Algebra 324 (2010), 231-247. (2010) Zbl1197.14064MR2651354DOI10.1016/j.jalgebra.2010.04.022
  23. Zhao, W., 10.1016/j.jalgebra.2011.09.036, J. Algebra 350 (2012), 245-272. (2012) Zbl1255.16018MR2859886DOI10.1016/j.jalgebra.2011.09.036
  24. Zhao, W., 10.1142/S0219199717500560, Commun. Contemp. Math. 20 (2018), Article ID 1750056, 25 pages. (2018) Zbl1476.16004MR3810636DOI10.1142/S0219199717500560

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.