On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
Nguyen Vu Dzung; Le Thi Phuong Ngoc; Nguyen Huu Nhan; Nguyen Thanh Long
Mathematica Bohemica (2024)
- Volume: 149, Issue: 2, page 261-285
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topDzung, Nguyen Vu, et al. "On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values." Mathematica Bohemica 149.2 (2024): 261-285. <http://eudml.org/doc/299590>.
@article{Dzung2024,
abstract = {We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _\{1\},t),\cdots ,u(\eta _\{q\},t)$ with $0\le \eta _\{1\}<\eta _\{2\}<\cdots <\eta _\{q\}<1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $(\{\rm P\}_\{q\})$ of (P) in which the nonlinear term contains the sum $S_\{q\}[u^\{2\}](t)=q^\{-1\}\sum _\{i=1\}^\{q\}u^\{2\}(\frac\{(i-1)\}\{q\},t)$. Under suitable conditions, we prove that the solution of $(\{\rm P\}_\{q\})$ converges to the solution of the corresponding problem $(\{\rm P\}_\{\infty \})$ as $q\rightarrow \infty $ (in a certain sense), here $(\{\rm P\}_\{\infty \})$ is defined by $(\{\rm P\}_\{q\})$ in which $S_\{q\}[u^\{2\}](t)$ is replaced by $ \int _\{0\}^\{1\}u^\{2\}( y,t) \{\rm d\}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.},
author = {Dzung, Nguyen Vu, Ngoc, Le Thi Phuong, Nhan, Nguyen Huu, Long, Nguyen Thanh},
journal = {Mathematica Bohemica},
keywords = {Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method},
language = {eng},
number = {2},
pages = {261-285},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values},
url = {http://eudml.org/doc/299590},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Dzung, Nguyen Vu
AU - Ngoc, Le Thi Phuong
AU - Nhan, Nguyen Huu
AU - Long, Nguyen Thanh
TI - On a Kirchhoff-Carrier equation with nonlinear terms containing a finite number of unknown values
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 2
SP - 261
EP - 285
AB - We consider problem (P) of Kirchhoff-Carrier type with nonlinear terms containing a finite number of unknown values $u(\eta _{1},t),\cdots ,u(\eta _{q},t)$ with $0\le \eta _{1}<\eta _{2}<\cdots <\eta _{q}<1.$ By applying the linearization method together with the Faedo-Galerkin method and the weak compact method, we first prove the existence and uniqueness of a local weak solution of problem (P). Next, we consider a specific case $({\rm P}_{q})$ of (P) in which the nonlinear term contains the sum $S_{q}[u^{2}](t)=q^{-1}\sum _{i=1}^{q}u^{2}(\frac{(i-1)}{q},t)$. Under suitable conditions, we prove that the solution of $({\rm P}_{q})$ converges to the solution of the corresponding problem $({\rm P}_{\infty })$ as $q\rightarrow \infty $ (in a certain sense), here $({\rm P}_{\infty })$ is defined by $({\rm P}_{q})$ in which $S_{q}[u^{2}](t)$ is replaced by $ \int _{0}^{1}u^{2}( y,t) {\rm d}y.$ The proof is done by using the compactness lemma of Aubin-Lions and the method of continuity with a priori estimates. We end the paper with remarks related to similar problems.
LA - eng
KW - Kirchhoff-Carrier equation; Robin-Dirichlet problem; nonlocal term; Faedo-Galerkin method; linearization method
UR - http://eudml.org/doc/299590
ER -
References
top- Agarwal, R. P., 10.1142/0266, World Scientific, Singapore (1986). (1986) Zbl0619.34019MR1021979DOI10.1142/0266
- Andreu-Vaillo, F., Mazón, J. M., Rossi, J. D., Toledo-Melero, J. J., 10.1090/surv/165, Mathematical Surveys and Monographs 165. AMS, Providence (2010). (2010) Zbl1214.45002MR2722295DOI10.1090/surv/165
- Carrier, G. F., 10.1090/qam/12351, Q. Appl. Math. 3 (1945), 157-165. (1945) Zbl0063.00715MR0012351DOI10.1090/qam/12351
- Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Filho, J. S. Prates, Soriano, J. A., 10.1006/jmaa.1998.6057, J. Math. Anal. Appl. 226 (1998), 40-60. (1998) Zbl0914.35081MR1646453DOI10.1006/jmaa.1998.6057
- Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A., 10.57262/ade/1357140586, Adv. Differ. Equ. 6 (2001), 701-730. (2001) Zbl1007.35049MR1829093DOI10.57262/ade/1357140586
- Cavalcanti, M. M., Cavalcanti, V. N. Domingos, Soriano, J. A., Filho, J. S. Prates, 10.5209/rev_REMA.2001.v14.n1.17054, Rev. Mat. Complut. 14 (2001), 177-203. (2001) Zbl0983.35025MR1851728DOI10.5209/rev_REMA.2001.v14.n1.17054
- Kafini, M., Messaoudi, S. A., 10.1016/j.aml.2007.07.004, Appl. Math. Lett. 21 (2008), 549-553. (2008) Zbl1149.35076MR2412376DOI10.1016/j.aml.2007.07.004
- Kafini, M., Mustafa, M. I., 10.1016/j.nonrwa.2014.04.005, Nonlinear Anal., Real World Appl. 20 (2014), 14-20. (2014) Zbl1295.35129MR3233895DOI10.1016/j.nonrwa.2014.04.005
- Kirchhoff, G., Vorlesungen über mathematische Physik. Erster Band. Mechanik, B. G. Teubner, Leipzig (1897), German 9999JFM99999 28.0603.01. (1897) MR1546520
- Larkin, N. A., 10.1080/10241230211382, Math. Probl. Eng. 8 (2002), 15-31. (2002) Zbl1051.35042MR1918087DOI10.1080/10241230211382
- Li, Q., He, L., 10.1186/s13661-018-1072-1, Bound. Value Probl. 2018 (2018), Article ID 153, 22 pages. (2018) Zbl1499.35099MR3859565DOI10.1186/s13661-018-1072-1
- Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris (1969), French. (1969) Zbl0189.40603MR0259693
- Long, N. T., Dinh, A. P. N., Diem, T. N., 10.1006/jmaa.2001.7755, J. Math. Anal. Appl. 267 (2002), 116-134. (2002) Zbl1004.35095MR1886820DOI10.1006/jmaa.2001.7755
- Medeiros, L. A., On some nonlinear perturbation of Kirchhoff-Carrier operator, Comput. Appl. Math. 13 (1994), 225-233. (1994) Zbl0821.35100MR1326759
- Medeiros, L. A., Limaco, J., Menezes, S. B., 10.1023/A:1012934900316, J. Comput. Anal. Appl. 4 (2002), 91-127. (2002) Zbl1118.35335MR1875347DOI10.1023/A:1012934900316
- Medeiros, L. A., Limaco, J., Menezes, S. B., 10.1023/A:1013151525487, J. Comput. Anal. Appl. 4 (2002), 211-263. (2002) Zbl1118.35336MR1878996DOI10.1023/A:1013151525487
- Messaoudi, S. A., 10.1002/mana.200310104, Math. Nachr. 260 (2003), 58-66. (2003) Zbl1035.35082MR2017703DOI10.1002/mana.200310104
- Messaoudi, S. A., 10.1016/j.na.2007.08.035, Nonlinear Anal., Theory Methods Appl., Ser. A 69 (2008), 2589-2598. (2008) Zbl1154.35066MR2446355DOI10.1016/j.na.2007.08.035
- Mustafa, M. I., 10.1016/j.jmaa.2017.08.019, J. Math. Anal. Appl. 457 (2018), 134-152. (2018) Zbl1379.35028MR3702699DOI10.1016/j.jmaa.2017.08.019
- Nhan, N. H., Ngoc, L. T. P., Long, N. T., 10.1186/s13661-017-0818-5, Bound. Value Probl. 2017 (2017), Article ID 87, 20 pages. (2017) Zbl1370.35212MR3660353DOI10.1186/s13661-017-0818-5
- Park, J. Y., Bae, J. J., 10.1016/S0096-3003(01)00031-5, Appl. Math. Comput. 129 (2002), 87-105. (2002) Zbl1032.35139MR1897321DOI10.1016/S0096-3003(01)00031-5
- Park, J. Y., Park, S. H., 10.1063/1.3187780, J. Math. Phys. 50 (2009), Article ID 083505, 10 pages. (2009) Zbl1298.35221MR2554433DOI10.1063/1.3187780
- Santos, M. L., Ferreira, J., Pereira, D. C., Raposo, C. A., 10.1016/S0362-546X(03)00121-4, Nonlinear Anal., Theory Methods Appl., Ser. A 54 (2003), 959-976. (2003) Zbl1032.35140MR1992515DOI10.1016/S0362-546X(03)00121-4
- Showalter, R. E., Hilbert Space Methods for Partial Differential Equations, Electronic Journal of Differential Equations. Monograph 1. Southwest Texas State University, San Marcos (1994). (1994) Zbl0991.35001MR1302484
- Tatar, N., Zaraï, A., 10.1515/dema-2013-0297, Demonstr. Math. 44 (2011), 67-90. (2011) Zbl1227.35074MR2796763DOI10.1515/dema-2013-0297
- Wang, Y., Wang, Y., 10.1016/j.jmaa.2008.05.098, J. Math. Anal. Appl. 347 (2008), 18-25. (2008) Zbl1149.35323MR2433821DOI10.1016/j.jmaa.2008.05.098
- Wu, S.-T., 10.1016/j.jmaa.2009.11.046, J. Math. Anal. Appl. 364 (2010), 609-617. (2010) Zbl1205.45012MR2576211DOI10.1016/j.jmaa.2009.11.046
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.