A geometric construction for spectrally arbitrary sign pattern matrices and the -conjecture
Czechoslovak Mathematical Journal (2023)
- Volume: 73, Issue: 2, page 565-580
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJadhav, Dipak, and Deore, Rajendra. "A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture." Czechoslovak Mathematical Journal 73.2 (2023): 565-580. <http://eudml.org/doc/299596>.
@article{Jadhav2023,
abstract = {We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to $2n$-conjecture. We determine that the $2n$-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least $n-1$ nonzero entries.},
author = {Jadhav, Dipak, Deore, Rajendra},
journal = {Czechoslovak Mathematical Journal},
keywords = {spectrally arbitrary sign pattern; $2n$-conjecture},
language = {eng},
number = {2},
pages = {565-580},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture},
url = {http://eudml.org/doc/299596},
volume = {73},
year = {2023},
}
TY - JOUR
AU - Jadhav, Dipak
AU - Deore, Rajendra
TI - A geometric construction for spectrally arbitrary sign pattern matrices and the $2n$-conjecture
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 565
EP - 580
AB - We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to $2n$-conjecture. We determine that the $2n$-conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least $n-1$ nonzero entries.
LA - eng
KW - spectrally arbitrary sign pattern; $2n$-conjecture
UR - http://eudml.org/doc/299596
ER -
References
top- Bergsma, H., Meulen, K. N. Vander, Tuyl, A. Van, 10.1016/j.laa.2011.05.017, Linear Algebra Appl. 436 (2012), 4433-4445. (2012) Zbl1244.15019MR2917420DOI10.1016/j.laa.2011.05.017
- Britz, T., McDonald, J. J., Olesky, D. D., Driessche, P. van den, 10.1137/S0895479803432514, SIAM J. Matrix Anal. Appl. 26 (2004), 257-271. (2004) Zbl1082.15016MR2112860DOI10.1137/S0895479803432514
- Brualdi, R. A., Carmona, Á., Driessche, P. van den, Kirkland, S., Stevanović, D., 10.1007/978-3-319-70953-6, Advanced Courses in Mathematics - CRM Barcelona. Birkhäuser, Cham (2018). (2018) Zbl1396.05002MR3791450DOI10.1007/978-3-319-70953-6
- Catral, M., Olesky, D. D., Driessche, P. van den, 10.1016/j.laa.2009.01.031, Linear Algebra Appl. 430 (2009), 3080-3094. (2009) Zbl1165.15009MR2517861DOI10.1016/j.laa.2009.01.031
- Cavers, M. S., Fallat, S. M., 10.13001/1081-3810.1553, Electron. J. Linear Algebra 23 (2012), 731-754. (2012) Zbl1251.15034MR2966802DOI10.13001/1081-3810.1553
- Deaett, L., Garnett, C., 10.1515/spma-2020-0136, Spec. Matrices 9 (2021), 257-274. (2021) Zbl1478.15045MR4249690DOI10.1515/spma-2020-0136
- Garnett, C., Shader, B. L., 10.1016/j.laa.2011.06.051, Linear Algebra Appl. 436 (2012), 4451-4458. (2012) Zbl1244.15020MR2917422DOI10.1016/j.laa.2011.06.051
- Hall, F. J., Li, Z., 10.1201/9781420010572, Handbook of Linear Algebra Chapman and Hall/CRC, New York (2018), Chapter 33-1. DOI10.1201/9781420010572
- Quirk, J., Ruppert, R., 10.2307/2295838, Rev. Econ. Stud. 32 (1965), 311-326. (1965) DOI10.2307/2295838
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.