On the divisor function over Piatetski-Shapiro sequences

Hui Wang; Yu Zhang

Czechoslovak Mathematical Journal (2023)

  • Volume: 73, Issue: 2, page 613-620
  • ISSN: 0011-4642

Abstract

top
Let [ x ] be an integer part of x and d ( n ) be the number of positive divisor of n . Inspired by some results of M. Jutila (1987), we prove that for 1 < c < 6 5 , n x d ( [ n c ] ) = c x log x + ( 2 γ - c ) x + O x log x , where γ is the Euler constant and [ n c ] is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.

How to cite

top

Wang, Hui, and Zhang, Yu. "On the divisor function over Piatetski-Shapiro sequences." Czechoslovak Mathematical Journal 73.2 (2023): 613-620. <http://eudml.org/doc/299597>.

@article{Wang2023,
abstract = {Let $[x]$ be an integer part of $x$ and $d(n)$ be the number of positive divisor of $n$. Inspired by some results of M. Jutila (1987), we prove that for $1<c<\frac\{6\}\{5\}$, \[ \sum \_\{n\le x\} d([n^c])= cx\log x +(2\gamma -c)x+O\Bigl (\frac\{x\}\{\log x\}\Bigr ), \] where $\gamma $ is the Euler constant and $[n^c]$ is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.},
author = {Wang, Hui, Zhang, Yu},
journal = {Czechoslovak Mathematical Journal},
keywords = {divisor function; Piatetski-Shapiro sequence; exponential sum},
language = {eng},
number = {2},
pages = {613-620},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the divisor function over Piatetski-Shapiro sequences},
url = {http://eudml.org/doc/299597},
volume = {73},
year = {2023},
}

TY - JOUR
AU - Wang, Hui
AU - Zhang, Yu
TI - On the divisor function over Piatetski-Shapiro sequences
JO - Czechoslovak Mathematical Journal
PY - 2023
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 73
IS - 2
SP - 613
EP - 620
AB - Let $[x]$ be an integer part of $x$ and $d(n)$ be the number of positive divisor of $n$. Inspired by some results of M. Jutila (1987), we prove that for $1<c<\frac{6}{5}$, \[ \sum _{n\le x} d([n^c])= cx\log x +(2\gamma -c)x+O\Bigl (\frac{x}{\log x}\Bigr ), \] where $\gamma $ is the Euler constant and $[n^c]$ is the Piatetski-Shapiro sequence. This gives an improvement upon the classical result of this problem.
LA - eng
KW - divisor function; Piatetski-Shapiro sequence; exponential sum
UR - http://eudml.org/doc/299597
ER -

References

top
  1. Arkhipov, G. I., Chubarikov, V. N., On the distribution of prime numbers in a sequence of the form [ n c ] , Mosc. Univ. Math. Bull. 54 (1999), 25-35 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 25-35. (1999) Zbl0983.11055MR1735145
  2. Arkhipov, G. I., Soliba, K. M., Chubarikov, V. N., On the sum of values of a multidimensional divisor function on a sequence of type [ n c ] , Mosc. Univ. Math. Bull. 54 (1999), 28-36 translation from Vestn. Mosk. Univ., Ser. I 1999 1999 28-35. (1999) Zbl0957.11040MR1706007
  3. Graham, S. W., Kolesnik, G., 10.1017/CBO9780511661976, London Mathematical Society Lecture Note Series 126. Cambridge University Press, Cambridge (1991). (1991) Zbl0713.11001MR1145488DOI10.1017/CBO9780511661976
  4. Heath-Brown, D. R., 10.1016/0022-314X(83)90044-6, J. Number Theory 16 (1983), 242-266. (1983) Zbl0513.10042MR0698168DOI10.1016/0022-314X(83)90044-6
  5. Jutila, M., Lectures on a Method in the Theory of Exponential Sums, Tata Institute Lectures on Mathematics and Physics 80. Springer, Berlin (1987). (1987) Zbl0671.10031MR0910497
  6. Kolesnik, G. A., 10.1007/BF01101405, Math. Notes 6 (1969), 784-791 translation from Mat. Zametki 6 1969 545-554. (1969) Zbl0233.10031MR0257004DOI10.1007/BF01101405
  7. Kolesnik, G. A., 10.2140/PJM.1985.118.437, Pac. J. Math. 118 (1985), 437-447. (1985) Zbl0571.10037MR0789183DOI10.2140/PJM.1985.118.437
  8. Liu, H. Q., Rivat, J., 10.1112/BLMS/24.2.143, Bull. Lond. Math. Soc. 24 (1992), 143-147. (1992) Zbl0772.11032MR1148674DOI10.1112/BLMS/24.2.143
  9. Lü, G. S., Zhai, W. G., The sum of multidimensional divisor functions on a special sequence, Adv. Math., Beijing 32 (2003), 660-664 Chinese. (2003) Zbl1481.11090MR2058014
  10. Piatetski-Shapiro, I. I., On the distribution of the prime numbers in sequences of the form [ f ( n ) ] , Mat. Sb., N. Ser. 33 (1953), 559-566 Russian. (1953) Zbl0053.02702MR0059302
  11. Rivat, J., Sargos, P., 10.4153/CJM-2001-017-0, Can. J. Math. 53 (2001), 414-433 French. (2001) Zbl0970.11035MR1820915DOI10.4153/CJM-2001-017-0
  12. Rivat, J., Wu, J., 10.1017/S0017089501020080, Glasg. Math. J. 43 (2001), 237-254. (2001) Zbl0987.11052MR1838628DOI10.1017/S0017089501020080
  13. Vaaler, J. D., 10.1090/S0273-0979-1985-15349-2, Bull. Am. Math. Soc., New Ser. 12 (1985), 183-216. (1985) Zbl0575.42003MR0776471DOI10.1090/S0273-0979-1985-15349-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.