Hall algebra of morphism category

QingHua Chen; Liwang Zhang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1145-1164
  • ISSN: 0011-4642

Abstract

top
This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra ( C 2 ( 𝒫 ) ) , where C 2 ( 𝒫 ) is the category of morphisms between projective objects in a finitary hereditary exact category 𝒜 . When 𝒜 is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra , which is spanned by isoclasses of indecomposable objects in C 2 ( 𝒫 ) . As applications, we demonstrate that contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with 𝒜 as a Lie subquotient algebra of .

How to cite

top

Chen, QingHua, and Zhang, Liwang. "Hall algebra of morphism category." Czechoslovak Mathematical Journal 74.4 (2024): 1145-1164. <http://eudml.org/doc/299607>.

@article{Chen2024,
abstract = {This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal \{H\}(C_2(\mathcal \{P\}))$, where $C_2(\mathcal \{P\})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal \{A\}$. When $\mathcal \{A\}$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal \{L\}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal \{P\})$. As applications, we demonstrate that $\mathcal \{L\}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal \{A\}$ as a Lie subquotient algebra of $\mathcal \{L\}$.},
author = {Chen, QingHua, Zhang, Liwang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hall algebra; morphism category; Heisenberg Lie algebra; simple Lie algebra},
language = {eng},
number = {4},
pages = {1145-1164},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hall algebra of morphism category},
url = {http://eudml.org/doc/299607},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Chen, QingHua
AU - Zhang, Liwang
TI - Hall algebra of morphism category
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1145
EP - 1164
AB - This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal {H}(C_2(\mathcal {P}))$, where $C_2(\mathcal {P})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal {A}$. When $\mathcal {A}$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal {L}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal {P})$. As applications, we demonstrate that $\mathcal {L}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal {A}$ as a Lie subquotient algebra of $\mathcal {L}$.
LA - eng
KW - Hall algebra; morphism category; Heisenberg Lie algebra; simple Lie algebra
UR - http://eudml.org/doc/299607
ER -

References

top
  1. Auslander, M., Reiten, I., 10.1112/jlms/s2-12.3.371, J. Lond. Math. Soc., II. Ser. 12 (1976), 371-382. (1976) Zbl0316.16034MR0399174DOI10.1112/jlms/s2-12.3.371
  2. Bautista, R., 10.1081/AGB-200034145, Commun. Algebra 32 (2004), 4303-4331. (2004) Zbl1081.16025MR2102451DOI10.1081/AGB-200034145
  3. Berenstein, A., Greenstein, J., 10.2140/pjm.2016.281.287, Pac. J. Math. 281 (2016), 287-331. (2016) Zbl1338.16016MR3463039DOI10.2140/pjm.2016.281.287
  4. Birkhoff, G., 10.1112/plms/s2-38.1.385, Proc. Lond. Math. Soc. (1935), 385-401. (1935) Zbl0010.34304MR1576323DOI10.1112/plms/s2-38.1.385
  5. Bridgeland, T., 10.4007/annals.2013.177.2.9, Ann. Math. (2) 177 (2013), 739-759. (2013) Zbl1268.16017MR3010811DOI10.4007/annals.2013.177.2.9
  6. Irelli, G. Cerulli, Feigin, E., Reineke, M., 10.2140/ant.2012.6.165, Algebra Number Theory 6 (2012), 165-194. (2012) Zbl1282.14083MR2950163DOI10.2140/ant.2012.6.165
  7. Chen, Q., Deng, B., 10.1016/j.jalgebra.2015.04.043, J. Algebra 440 (2015), 1-32. (2015) Zbl1328.16007MR3373385DOI10.1016/j.jalgebra.2015.04.043
  8. Deng, B., Du, J., Parshall, B., Wang, J., 10.1090/surv/150, Mathematical Surveys and Monographs 150. AMS, Providence (2008). (2008) Zbl1154.17003MR2457938DOI10.1090/surv/150
  9. Ding, M., Xu, F., Zhang, H., 10.1007/s00209-020-02465-0, Math. Z. 296 (2020), 945-968. (2020) Zbl1509.17010MR4159816DOI10.1007/s00209-020-02465-0
  10. Eiríksson, "O., 10.1016/j.jalgebra.2017.05.012, J. Algebra 486 (2017), 98-118. (2017) Zbl1407.16005MR3666209DOI10.1016/j.jalgebra.2017.05.012
  11. Gabriel, P., 10.1007/BF01298413, Manuscr. Math. 6 (1972), 71-103 German. (1972) Zbl0232.08001MR0332887DOI10.1007/BF01298413
  12. Gabriel, P., Indecomposable representations. II, Symposia Mathematica, Vol. XI Academic Press, London (1973), 81-104. (1973) Zbl0276.16001MR0340377
  13. Guo, J. Y., Peng, L., 10.1006/jabr.1997.7065, J. Algebra 198 (1997), 339-351. (1997) Zbl0893.16005MR1489901DOI10.1006/jabr.1997.7065
  14. Hafezi, R., Eshraghi, H., 10.1016/j.jalgebra.2023.05.045, J. Algebra 633 (2023), 88-113. (2023) Zbl1528.16008MR4610782DOI10.1016/j.jalgebra.2023.05.045
  15. Hubery, A., 10.1090/conm/406, Trends in Representation Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. (2006) Zbl1107.16021MR2258041DOI10.1090/conm/406
  16. Kussin, D., Lenzing, H., Meltzer, H., 10.1515/crelle-2012-0014, J. Reine. Angew. Math. 685 (2013), 33-71. (2013) Zbl1293.16008MR3181563DOI10.1515/crelle-2012-0014
  17. Lin, Z., 10.1007/s10468-021-10087-1, Algebr. Represent. Theory 26 (2023), 117-136. (2023) Zbl1509.18014MR4546135DOI10.1007/s10468-021-10087-1
  18. Luo, X.-H., Zhang, P., 10.1016/j.jalgebra.2017.01.038, J. Algebra 479 (2017), 1-34. (2017) Zbl1405.16022MR3627275DOI10.1016/j.jalgebra.2017.01.038
  19. Peng, L., 10.1006/jabr.1997.7113, J. Algebra 197 (1997), 1-13. (1997) Zbl0891.16010MR1480775DOI10.1006/jabr.1997.7113
  20. Peng, L., Xiao, J., 10.1006/jabr.1997.7152, J. Algebra 198 (1997), 19-56. (1997) Zbl0893.16007MR1482975DOI10.1006/jabr.1997.7152
  21. Quillen, D., 10.1007/BFb0067053, Algebr. -Theory. I Lecture Notes in Mathematics 341. Springer, Berlin (1973), 85-147. (1973) Zbl0292.18004MR0338129DOI10.1007/BFb0067053
  22. Riedtmann, C., 10.1006/jabr.1994.1351, J. Algebra 170 (1994), 526-546. (1994) Zbl0841.16018MR1302854DOI10.1006/jabr.1994.1351
  23. Ringel, C. M., Zhang, P., 10.1007/s00209-014-1305-7, Math. Z. 278 (2014), 55-73. (2014) Zbl1344.16011MR3267569DOI10.1007/s00209-014-1305-7
  24. Ruan, S., Sheng, J., Zhang, H., 10.1016/j.jalgebra.2021.06.030, J. Algebra 586 (2021), 232-288. (2021) Zbl1477.16022MR4287774DOI10.1016/j.jalgebra.2021.06.030
  25. Sevenhant, B., Bergh, M. Van den, 10.1006/jabr.1999.7958, J. Algebra 221 (1999), 135-160. (1999) Zbl0955.16016MR1722908DOI10.1006/jabr.1999.7958
  26. Nasab, A. R. Shir Ali, Hosseini, S. N., 10.1007/s10485-015-9420-0, Appl. Categ. Struct. 25 (2017), 197-225. (2017) Zbl1397.18006MR3638360DOI10.1007/s10485-015-9420-0
  27. Wang, G.-J., Li, F., 10.11650/twjm/1500574161, Taiwanese J. Math. 12 (2008), 373-387. (2008) Zbl1143.18012MR2402122DOI10.11650/twjm/1500574161
  28. Xiong, B.-L., Zhang, P., Zhang, Y.-H., 10.1515/forum-2011-0003, Forum Math. 26 (2014), 863-912. (2014) Zbl1319.16017MR3200353DOI10.1515/forum-2011-0003
  29. Zhang, H., 10.1093/imrn/rnz151, Int. Math. Res. Not. 2021 (2021), 402-425. (2021) Zbl1508.16023MR4198500DOI10.1093/imrn/rnz151

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.