Hall algebra of morphism category
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1145-1164
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, QingHua, and Zhang, Liwang. "Hall algebra of morphism category." Czechoslovak Mathematical Journal 74.4 (2024): 1145-1164. <http://eudml.org/doc/299607>.
@article{Chen2024,
abstract = {This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal \{H\}(C_2(\mathcal \{P\}))$, where $C_2(\mathcal \{P\})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal \{A\}$. When $\mathcal \{A\}$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal \{L\}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal \{P\})$. As applications, we demonstrate that $\mathcal \{L\}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal \{A\}$ as a Lie subquotient algebra of $\mathcal \{L\}$.},
author = {Chen, QingHua, Zhang, Liwang},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hall algebra; morphism category; Heisenberg Lie algebra; simple Lie algebra},
language = {eng},
number = {4},
pages = {1145-1164},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hall algebra of morphism category},
url = {http://eudml.org/doc/299607},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Chen, QingHua
AU - Zhang, Liwang
TI - Hall algebra of morphism category
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1145
EP - 1164
AB - This paper investigates a universal PBW-basis and a minimal set of generators for the Hall algebra $\mathcal {H}(C_2(\mathcal {P}))$, where $C_2(\mathcal {P})$ is the category of morphisms between projective objects in a finitary hereditary exact category $\mathcal {A}$. When $\mathcal {A}$ is the representation category of a Dynkin quiver, we develop multiplication formulas for the degenerate Hall Lie algebra $\mathcal {L}$, which is spanned by isoclasses of indecomposable objects in $C_2(\mathcal {P})$. As applications, we demonstrate that $\mathcal {L}$ contains a Lie subalgebra isomorphic to the central extension of the Heisenberg Lie algebra and construct the Borel subalgebra of the simple Lie algebra associated with $\mathcal {A}$ as a Lie subquotient algebra of $\mathcal {L}$.
LA - eng
KW - Hall algebra; morphism category; Heisenberg Lie algebra; simple Lie algebra
UR - http://eudml.org/doc/299607
ER -
References
top- Auslander, M., Reiten, I., 10.1112/jlms/s2-12.3.371, J. Lond. Math. Soc., II. Ser. 12 (1976), 371-382. (1976) Zbl0316.16034MR0399174DOI10.1112/jlms/s2-12.3.371
- Bautista, R., 10.1081/AGB-200034145, Commun. Algebra 32 (2004), 4303-4331. (2004) Zbl1081.16025MR2102451DOI10.1081/AGB-200034145
- Berenstein, A., Greenstein, J., 10.2140/pjm.2016.281.287, Pac. J. Math. 281 (2016), 287-331. (2016) Zbl1338.16016MR3463039DOI10.2140/pjm.2016.281.287
- Birkhoff, G., 10.1112/plms/s2-38.1.385, Proc. Lond. Math. Soc. (1935), 385-401. (1935) Zbl0010.34304MR1576323DOI10.1112/plms/s2-38.1.385
- Bridgeland, T., 10.4007/annals.2013.177.2.9, Ann. Math. (2) 177 (2013), 739-759. (2013) Zbl1268.16017MR3010811DOI10.4007/annals.2013.177.2.9
- Irelli, G. Cerulli, Feigin, E., Reineke, M., 10.2140/ant.2012.6.165, Algebra Number Theory 6 (2012), 165-194. (2012) Zbl1282.14083MR2950163DOI10.2140/ant.2012.6.165
- Chen, Q., Deng, B., 10.1016/j.jalgebra.2015.04.043, J. Algebra 440 (2015), 1-32. (2015) Zbl1328.16007MR3373385DOI10.1016/j.jalgebra.2015.04.043
- Deng, B., Du, J., Parshall, B., Wang, J., 10.1090/surv/150, Mathematical Surveys and Monographs 150. AMS, Providence (2008). (2008) Zbl1154.17003MR2457938DOI10.1090/surv/150
- Ding, M., Xu, F., Zhang, H., 10.1007/s00209-020-02465-0, Math. Z. 296 (2020), 945-968. (2020) Zbl1509.17010MR4159816DOI10.1007/s00209-020-02465-0
- Eiríksson, "O., 10.1016/j.jalgebra.2017.05.012, J. Algebra 486 (2017), 98-118. (2017) Zbl1407.16005MR3666209DOI10.1016/j.jalgebra.2017.05.012
- Gabriel, P., 10.1007/BF01298413, Manuscr. Math. 6 (1972), 71-103 German. (1972) Zbl0232.08001MR0332887DOI10.1007/BF01298413
- Gabriel, P., Indecomposable representations. II, Symposia Mathematica, Vol. XI Academic Press, London (1973), 81-104. (1973) Zbl0276.16001MR0340377
- Guo, J. Y., Peng, L., 10.1006/jabr.1997.7065, J. Algebra 198 (1997), 339-351. (1997) Zbl0893.16005MR1489901DOI10.1006/jabr.1997.7065
- Hafezi, R., Eshraghi, H., 10.1016/j.jalgebra.2023.05.045, J. Algebra 633 (2023), 88-113. (2023) Zbl1528.16008MR4610782DOI10.1016/j.jalgebra.2023.05.045
- Hubery, A., 10.1090/conm/406, Trends in Representation Theory of Algebras and Related Topics Contemporary Mathematics 406. AMS, Providence (2006), 51-66. (2006) Zbl1107.16021MR2258041DOI10.1090/conm/406
- Kussin, D., Lenzing, H., Meltzer, H., 10.1515/crelle-2012-0014, J. Reine. Angew. Math. 685 (2013), 33-71. (2013) Zbl1293.16008MR3181563DOI10.1515/crelle-2012-0014
- Lin, Z., 10.1007/s10468-021-10087-1, Algebr. Represent. Theory 26 (2023), 117-136. (2023) Zbl1509.18014MR4546135DOI10.1007/s10468-021-10087-1
- Luo, X.-H., Zhang, P., 10.1016/j.jalgebra.2017.01.038, J. Algebra 479 (2017), 1-34. (2017) Zbl1405.16022MR3627275DOI10.1016/j.jalgebra.2017.01.038
- Peng, L., 10.1006/jabr.1997.7113, J. Algebra 197 (1997), 1-13. (1997) Zbl0891.16010MR1480775DOI10.1006/jabr.1997.7113
- Peng, L., Xiao, J., 10.1006/jabr.1997.7152, J. Algebra 198 (1997), 19-56. (1997) Zbl0893.16007MR1482975DOI10.1006/jabr.1997.7152
- Quillen, D., 10.1007/BFb0067053, Algebr. -Theory. I Lecture Notes in Mathematics 341. Springer, Berlin (1973), 85-147. (1973) Zbl0292.18004MR0338129DOI10.1007/BFb0067053
- Riedtmann, C., 10.1006/jabr.1994.1351, J. Algebra 170 (1994), 526-546. (1994) Zbl0841.16018MR1302854DOI10.1006/jabr.1994.1351
- Ringel, C. M., Zhang, P., 10.1007/s00209-014-1305-7, Math. Z. 278 (2014), 55-73. (2014) Zbl1344.16011MR3267569DOI10.1007/s00209-014-1305-7
- Ruan, S., Sheng, J., Zhang, H., 10.1016/j.jalgebra.2021.06.030, J. Algebra 586 (2021), 232-288. (2021) Zbl1477.16022MR4287774DOI10.1016/j.jalgebra.2021.06.030
- Sevenhant, B., Bergh, M. Van den, 10.1006/jabr.1999.7958, J. Algebra 221 (1999), 135-160. (1999) Zbl0955.16016MR1722908DOI10.1006/jabr.1999.7958
- Nasab, A. R. Shir Ali, Hosseini, S. N., 10.1007/s10485-015-9420-0, Appl. Categ. Struct. 25 (2017), 197-225. (2017) Zbl1397.18006MR3638360DOI10.1007/s10485-015-9420-0
- Wang, G.-J., Li, F., 10.11650/twjm/1500574161, Taiwanese J. Math. 12 (2008), 373-387. (2008) Zbl1143.18012MR2402122DOI10.11650/twjm/1500574161
- Xiong, B.-L., Zhang, P., Zhang, Y.-H., 10.1515/forum-2011-0003, Forum Math. 26 (2014), 863-912. (2014) Zbl1319.16017MR3200353DOI10.1515/forum-2011-0003
- Zhang, H., 10.1093/imrn/rnz151, Int. Math. Res. Not. 2021 (2021), 402-425. (2021) Zbl1508.16023MR4198500DOI10.1093/imrn/rnz151
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.