The Bogomolov multiplier of groups of order p 7 and exponent p

Zeinab Araghi Rostami; Mohsen Parvizi; Peyman Niroomand

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 955-974
  • ISSN: 0011-4642

Abstract

top
We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order p 7 ( p > 2 ) and exponent p . We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of p -groups.

How to cite

top

Araghi Rostami, Zeinab, Parvizi, Mohsen, and Niroomand, Peyman. "The Bogomolov multiplier of groups of order $p^7$ and exponent $p$." Czechoslovak Mathematical Journal 74.4 (2024): 955-974. <http://eudml.org/doc/299609>.

@article{AraghiRostami2024,
abstract = {We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$$(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups.},
author = {Araghi Rostami, Zeinab, Parvizi, Mohsen, Niroomand, Peyman},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutativity-preserving exterior product; $\{\widetilde\{B\}_0\}$-pairing; curly exterior square; Bogomolov multiplier},
language = {eng},
number = {4},
pages = {955-974},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Bogomolov multiplier of groups of order $p^7$ and exponent $p$},
url = {http://eudml.org/doc/299609},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Araghi Rostami, Zeinab
AU - Parvizi, Mohsen
AU - Niroomand, Peyman
TI - The Bogomolov multiplier of groups of order $p^7$ and exponent $p$
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 955
EP - 974
AB - We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$$(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups.
LA - eng
KW - commutativity-preserving exterior product; ${\widetilde{B}_0}$-pairing; curly exterior square; Bogomolov multiplier
UR - http://eudml.org/doc/299609
ER -

References

top
  1. Artin, M., Mumford, D., 10.1112/PLMS/S3-25.1.75, Proc. Lond. Math. Soc., III. Ser. 25 (1972), 75-95. (1972) Zbl0244.14017MR0321934DOI10.1112/PLMS/S3-25.1.75
  2. Blyth, R. D., Morse, R. F., 10.1016/j.jalgebra.2008.12.029, J. Algebra 321 (2009), 2139-2148. (2009) Zbl1195.20035MR2501513DOI10.1016/j.jalgebra.2008.12.029
  3. Bogomolov, F. A., 10.1070/IM1988v030n03ABEH001024, Math. USSR, Izv. 30 (1988), 455-485. (1988) Zbl0679.14025MR0903621DOI10.1070/IM1988v030n03ABEH001024
  4. Chen, Y., Ma, R., 10.1080/00927872.2020.1797074, Commun. Algebra 49 (2021), 242-255. (2021) Zbl1459.13007MR4193627DOI10.1080/00927872.2020.1797074
  5. Chu, H., Hu, S.-J., Kang, M.-C., Kunyavskii, B. E., 10.1093/imrn/rnp217, Int. Math. Res. Not. 12 (2010), 2329-2366. (2010) Zbl1196.12005MR2652224DOI10.1093/imrn/rnp217
  6. Chu, H., Kang, M.-C., 10.1006/jabr.2000.8615, J. Algebra 237 (2001), 673-690. (2001) Zbl1023.13007MR1816710DOI10.1006/jabr.2000.8615
  7. Eick, B., Nickel, W., 10.1016/j.jalgebra.2008.02.041, J. Algebra 320 (2008), 927-944. (2008) Zbl1163.20022MR2422322DOI10.1016/j.jalgebra.2008.02.041
  8. Hoshi, A., Kang, M.-C., 10.48550/arXiv.1109.2966, Available at https://arxiv.org/abs/1109.2966 (2011), 14 pages. (2011) DOI10.48550/arXiv.1109.2966
  9. Jezernik, U., Moravec, P., 10.1080/10586458.2014.886980, Exp. Math. 23 (2014), 174-180. (2014) Zbl1307.13010MR3223772DOI10.1080/10586458.2014.886980
  10. Kunyavskii, B., 10.1007/978-0-8176-4934-0_8, Cohomological and Geometric Approaches to Rationality Problems Progres in Mathematics 282. Birkhäuser, Boston (2010), 209-217. (2010) Zbl1204.14006MR2605170DOI10.1007/978-0-8176-4934-0_8
  11. Michailov, I., 10.1007/s10114-016-3667-8, Acta Math. Sin., Engl. Ser. 32 (2016), 541-552. (2016) Zbl1346.14037MR3483925DOI10.1007/s10114-016-3667-8
  12. Miller, C., 10.1090/S0002-9939-1952-0049191-5, Proc. Am. Math. Soc. 3 (1952), 588-595. (1952) Zbl0047.25703MR0049191DOI10.1090/S0002-9939-1952-0049191-5
  13. Moravec, P., 10.1016/j.jalgebra.2012.10.002, J. Algebra 372 (2012), 420-427. (2012) Zbl1303.13010MR2990018DOI10.1016/j.jalgebra.2012.10.002
  14. Moravec, P., 10.1353/ajm.2012.0046, Am. J. Math. 134 (2012), 1679-1704. (2012) Zbl1346.20072MR2999292DOI10.1353/ajm.2012.0046
  15. Moravec, P., 10.26493/1855-3974.392.9fd, ARS Math. Contemp. 7 (2014), 337-340. (2014) Zbl1327.14099MR3240441DOI10.26493/1855-3974.392.9fd
  16. Noether, E., 10.1007/BF01457099, Math. Ann. 78 (1917), 221-229 German 9999JFM99999 46.0135.01. (1917) MR1511893DOI10.1007/BF01457099
  17. O'Brien, E., Polycyclic group, Available at www.math.auckland.ac.nz/ {obrien/GAC-lectures.pdf} (2010), 51 pages. (2010) 
  18. Saltman, D. J., 10.1007/BF01389135, Invent. Math. 77 (1984), 71-84. (1984) Zbl0546.14014MR0751131DOI10.1007/BF01389135
  19. Shafarevich, I. R., The Lüroth's problem, Proc. Steklov Inst. Math. 183 (1991), 241-246. (1991) Zbl0731.14035MR1092032
  20. Swan, R. G., 10.1007/978-1-4612-5547-5_2, Emmy Noether in Bryn Mawr Springer, New York (1983), 21-40. (1983) Zbl0538.12012MR0713790DOI10.1007/978-1-4612-5547-5_2
  21. Wilkinson, D., 10.1016/0021-8693(88)90051-8, J. Algebra 118 (1988), 109-119. (1988) Zbl0651.20025MR0961329DOI10.1016/0021-8693(88)90051-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.