The Bogomolov multiplier of groups of order and exponent
Zeinab Araghi Rostami; Mohsen Parvizi; Peyman Niroomand
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 955-974
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAraghi Rostami, Zeinab, Parvizi, Mohsen, and Niroomand, Peyman. "The Bogomolov multiplier of groups of order $p^7$ and exponent $p$." Czechoslovak Mathematical Journal 74.4 (2024): 955-974. <http://eudml.org/doc/299609>.
@article{AraghiRostami2024,
abstract = {We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$$(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups.},
author = {Araghi Rostami, Zeinab, Parvizi, Mohsen, Niroomand, Peyman},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutativity-preserving exterior product; $\{\widetilde\{B\}_0\}$-pairing; curly exterior square; Bogomolov multiplier},
language = {eng},
number = {4},
pages = {955-974},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Bogomolov multiplier of groups of order $p^7$ and exponent $p$},
url = {http://eudml.org/doc/299609},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Araghi Rostami, Zeinab
AU - Parvizi, Mohsen
AU - Niroomand, Peyman
TI - The Bogomolov multiplier of groups of order $p^7$ and exponent $p$
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 955
EP - 974
AB - We conduct an in-depth investigation into the structure of the Bogomolov multiplier for groups of order $p^7$$(p > 2)$ and exponent $p$. We present a comprehensive classification of these groups, identifying those with nontrivial Bogomolov multipliers and distinguishing them from groups with trivial multipliers. Our analysis not only clarifies the conditions under which the Bogomolov multiplier is nontrivial but also refines existing computational methods, enhancing the process of determining these multipliers for the specified class of $p$-groups.
LA - eng
KW - commutativity-preserving exterior product; ${\widetilde{B}_0}$-pairing; curly exterior square; Bogomolov multiplier
UR - http://eudml.org/doc/299609
ER -
References
top- Artin, M., Mumford, D., 10.1112/PLMS/S3-25.1.75, Proc. Lond. Math. Soc., III. Ser. 25 (1972), 75-95. (1972) Zbl0244.14017MR0321934DOI10.1112/PLMS/S3-25.1.75
- Blyth, R. D., Morse, R. F., 10.1016/j.jalgebra.2008.12.029, J. Algebra 321 (2009), 2139-2148. (2009) Zbl1195.20035MR2501513DOI10.1016/j.jalgebra.2008.12.029
- Bogomolov, F. A., 10.1070/IM1988v030n03ABEH001024, Math. USSR, Izv. 30 (1988), 455-485. (1988) Zbl0679.14025MR0903621DOI10.1070/IM1988v030n03ABEH001024
- Chen, Y., Ma, R., 10.1080/00927872.2020.1797074, Commun. Algebra 49 (2021), 242-255. (2021) Zbl1459.13007MR4193627DOI10.1080/00927872.2020.1797074
- Chu, H., Hu, S.-J., Kang, M.-C., Kunyavskii, B. E., 10.1093/imrn/rnp217, Int. Math. Res. Not. 12 (2010), 2329-2366. (2010) Zbl1196.12005MR2652224DOI10.1093/imrn/rnp217
- Chu, H., Kang, M.-C., 10.1006/jabr.2000.8615, J. Algebra 237 (2001), 673-690. (2001) Zbl1023.13007MR1816710DOI10.1006/jabr.2000.8615
- Eick, B., Nickel, W., 10.1016/j.jalgebra.2008.02.041, J. Algebra 320 (2008), 927-944. (2008) Zbl1163.20022MR2422322DOI10.1016/j.jalgebra.2008.02.041
- Hoshi, A., Kang, M.-C., 10.48550/arXiv.1109.2966, Available at https://arxiv.org/abs/1109.2966 (2011), 14 pages. (2011) DOI10.48550/arXiv.1109.2966
- Jezernik, U., Moravec, P., 10.1080/10586458.2014.886980, Exp. Math. 23 (2014), 174-180. (2014) Zbl1307.13010MR3223772DOI10.1080/10586458.2014.886980
- Kunyavskii, B., 10.1007/978-0-8176-4934-0_8, Cohomological and Geometric Approaches to Rationality Problems Progres in Mathematics 282. Birkhäuser, Boston (2010), 209-217. (2010) Zbl1204.14006MR2605170DOI10.1007/978-0-8176-4934-0_8
- Michailov, I., 10.1007/s10114-016-3667-8, Acta Math. Sin., Engl. Ser. 32 (2016), 541-552. (2016) Zbl1346.14037MR3483925DOI10.1007/s10114-016-3667-8
- Miller, C., 10.1090/S0002-9939-1952-0049191-5, Proc. Am. Math. Soc. 3 (1952), 588-595. (1952) Zbl0047.25703MR0049191DOI10.1090/S0002-9939-1952-0049191-5
- Moravec, P., 10.1016/j.jalgebra.2012.10.002, J. Algebra 372 (2012), 420-427. (2012) Zbl1303.13010MR2990018DOI10.1016/j.jalgebra.2012.10.002
- Moravec, P., 10.1353/ajm.2012.0046, Am. J. Math. 134 (2012), 1679-1704. (2012) Zbl1346.20072MR2999292DOI10.1353/ajm.2012.0046
- Moravec, P., 10.26493/1855-3974.392.9fd, ARS Math. Contemp. 7 (2014), 337-340. (2014) Zbl1327.14099MR3240441DOI10.26493/1855-3974.392.9fd
- Noether, E., 10.1007/BF01457099, Math. Ann. 78 (1917), 221-229 German 9999JFM99999 46.0135.01. (1917) MR1511893DOI10.1007/BF01457099
- O'Brien, E., Polycyclic group, Available at www.math.auckland.ac.nz/ {obrien/GAC-lectures.pdf} (2010), 51 pages. (2010)
- Saltman, D. J., 10.1007/BF01389135, Invent. Math. 77 (1984), 71-84. (1984) Zbl0546.14014MR0751131DOI10.1007/BF01389135
- Shafarevich, I. R., The Lüroth's problem, Proc. Steklov Inst. Math. 183 (1991), 241-246. (1991) Zbl0731.14035MR1092032
- Swan, R. G., 10.1007/978-1-4612-5547-5_2, Emmy Noether in Bryn Mawr Springer, New York (1983), 21-40. (1983) Zbl0538.12012MR0713790DOI10.1007/978-1-4612-5547-5_2
- Wilkinson, D., 10.1016/0021-8693(88)90051-8, J. Algebra 118 (1988), 109-119. (1988) Zbl0651.20025MR0961329DOI10.1016/0021-8693(88)90051-8
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.