Dual modules and reflexive modules with respect to a semidualizing module

Lixin Mao

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 983-1005
  • ISSN: 0011-4642

Abstract

top
Let C be a semidualizing module over a commutative ring. We first investigate the properties of C -dual, C -torsionless and C -reflexive modules. Then we characterize some rings such as coherent rings, Π -coherent rings and FP-injectivity of C using C -dual, C -torsionless and C -reflexive properties of some special modules.

How to cite

top

Mao, Lixin. "Dual modules and reflexive modules with respect to a semidualizing module." Czechoslovak Mathematical Journal 74.4 (2024): 983-1005. <http://eudml.org/doc/299611>.

@article{Mao2024,
abstract = {Let $C$ be a semidualizing module over a commutative ring. We first investigate the properties of $C$-dual, $C$-torsionless and $C$-reflexive modules. Then we characterize some rings such as coherent rings, $\Pi $-coherent rings and FP-injectivity of $C$ using $C$-dual, $C$-torsionless and $C$-reflexive properties of some special modules.},
author = {Mao, Lixin},
journal = {Czechoslovak Mathematical Journal},
keywords = {semidualizing module; $C$-dual module; $C$-torsionless module; $C$-reflexive module},
language = {eng},
number = {4},
pages = {983-1005},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Dual modules and reflexive modules with respect to a semidualizing module},
url = {http://eudml.org/doc/299611},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Mao, Lixin
TI - Dual modules and reflexive modules with respect to a semidualizing module
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 983
EP - 1005
AB - Let $C$ be a semidualizing module over a commutative ring. We first investigate the properties of $C$-dual, $C$-torsionless and $C$-reflexive modules. Then we characterize some rings such as coherent rings, $\Pi $-coherent rings and FP-injectivity of $C$ using $C$-dual, $C$-torsionless and $C$-reflexive properties of some special modules.
LA - eng
KW - semidualizing module; $C$-dual module; $C$-torsionless module; $C$-reflexive module
UR - http://eudml.org/doc/299611
ER -

References

top
  1. Anderson, F. W., Fuller, K. R., 10.1007/978-1-4684-9913-1, Graduate Texts in Mathematics 13. Springer, New York (1974). (1974) Zbl0301.16001MR0417223DOI10.1007/978-1-4684-9913-1
  2. Angeleri-Hügel, L., 10.2140/pjm.2003.212.1, Pac. J. Math. 212 (2003), 1-11. (2003) Zbl1056.16001MR2016564DOI10.2140/pjm.2003.212.1
  3. Azumaya, G., 10.1016/0021-8693(87)90024-X, J. Algebra 106 (1987), 114-134. (1987) Zbl0607.16017MR0878471DOI10.1016/0021-8693(87)90024-X
  4. Bennis, D., Maaouy, R. El, Rozas, J. R. García, Oyonarte, L., 10.1142/S0219498823500159, J. Algebra Appl. 22 (2023), Arrticle ID 2350015, 25 pages. (2023) Zbl1507.18013MR4526175DOI10.1142/S0219498823500159
  5. Camillo, V., 10.1016/0021-8693(90)90252-J, J. Algebra 132 (1990), 72-76. (1990) Zbl0701.16023MR1060832DOI10.1016/0021-8693(90)90252-J
  6. Chase, S. U., 10.1090/S0002-9947-1960-0120260-3, Trans. Am. Math. Soc. 97 (1960), 457-473. (1960) Zbl0100.26602MR0120260DOI10.1090/S0002-9947-1960-0120260-3
  7. Christensen, L. W., 10.1090/S0002-9947-01-02627-7, Trans. Am. Math. Soc. 353 (2001), 1839-1883. (2001) Zbl0969.13006MR1813596DOI10.1090/S0002-9947-01-02627-7
  8. Colby, R. R., 10.1016/0021-8693(75)90049-6, J. Algebra 35 (1975), 239-252. (1975) Zbl0306.16015MR0376763DOI10.1016/0021-8693(75)90049-6
  9. Dai, G., Ding, N., 10.1080/00927872.2019.1595637, Commun. Algebra 47 (2019), 4743-4748. (2019) Zbl1470.16008MR3991048DOI10.1080/00927872.2019.1595637
  10. Ding, N., Dual modules of specific modules, J. Math. Res. Expo. 10 (1990), 337-340 Chinese. (1990) Zbl0788.16005MR1072438
  11. Ding, N., Chen, J., 10.1007/BF02567857, Manuscr. Math. 81 (1993), 243-262. (1993) Zbl0802.16023MR1248754DOI10.1007/BF02567857
  12. Enochs, E. E., Jenda, O. M. G., 10.1007/BF01246767, Arch. Math. 56 (1991), 528-532. (1991) Zbl0694.16012MR1106493DOI10.1007/BF01246767
  13. Enochs, E. E., Jenda, O. M. G., 10.1515/9783110803662, de Gruyter Expositions in Mathematics 30. Walter de Gruyter, Berlin (2000). (2000) Zbl0952.13001MR1753146DOI10.1515/9783110803662
  14. Jones, M. Finkel, 10.1080/00927878108822670, Commun. Algebra 9 (1981), 1603-1616. (1981) Zbl0472.16008MR0630577DOI10.1080/00927878108822670
  15. Jones, M. Finkel, Teply, M. L., 10.1080/00927878208822731, Commun. Algebra 10 (1982), 493-503. (1982) Zbl0492.16019MR0647834DOI10.1080/00927878208822731
  16. Foxby, H.-B., 10.7146/math.scand.a-11434, Math. Scand. 31 (1972), 267-284. (1972) Zbl0272.13009MR0327752DOI10.7146/math.scand.a-11434
  17. Göbel, R., Trlifaj, J., 10.1515/9783110199727, de Gruyter Expositions in Mathematics 41. Walter de Gruyter, Berlin (2006). (2006) Zbl1121.16002MR2251271DOI10.1515/9783110199727
  18. Golod, E. S., G -dimension and generalized perfect ideals, Tr. Mat. Inst. Steklova 165 (1984), 62-66 Russian. (1984) Zbl0577.13008MR0752933
  19. Holm, H., Jørgensen, H., 10.1016/j.jpaa.2005.07.010, J. Pure Appl. Algebra 205 (2006), 423-445. (2006) Zbl1094.13021MR2203625DOI10.1016/j.jpaa.2005.07.010
  20. Holm, H., White, D., 10.1215/kjm/1250692289, J. Math. Kyoto Univ. 47 (2007), 781-808. (2007) Zbl1154.16007MR2413065DOI10.1215/kjm/1250692289
  21. Huang, Z., 10.3934/era.2022147, Electron. Res. Arch. 30 (2022), 2899-2910. (2022) Zbl1511.16002MR4432007DOI10.3934/era.2022147
  22. Huang, Z., Tang, G., 10.1016/S0022-4049(00)00109-2, J. Pure Appl. Algebra 161 (2001), 167-176. (2001) Zbl0989.16005MR1834083DOI10.1016/S0022-4049(00)00109-2
  23. Lam, T. Y., 10.1007/978-1-4612-0525-8, Graduate Texts in Mathematics 189. Springer, New York (1999). (1999) Zbl0911.16001MR1653294DOI10.1007/978-1-4612-0525-8
  24. Mao, L., 10.1142/S0219498819501378, J. Algebra Appl. 18 (2019), Article ID 1950137, 12 pages. (2019) Zbl1472.16003MR3977798DOI10.1142/S0219498819501378
  25. Mao, L., Ding, N., 10.1080/00927870600778555, Commun. Algebra 34 (2006), 3281-3299. (2006) Zbl1162.16002MR2252672DOI10.1080/00927870600778555
  26. Salimi, M., Tavasoli, E., Moradifar, P., Yassemi, S., 10.1007/s10468-013-9443-x, Algebr. Represent. Theory 17 (2014), 1217-1234. (2014) Zbl1309.13016MR3228484DOI10.1007/s10468-013-9443-x
  27. Sather-Wagstaff, S., Semidualizing modules, Available at https://www.ndsu.edu/pubweb/ ssatherw/DOCS/survey.pdf (2008), 34 pages. (2008) 
  28. Stenström, B., 10.1112/jlms/s2-2.2.323, J. Lond. Math. Soc., II. Ser. 2 (1970), 323-329. (1970) Zbl0194.06602MR0258888DOI10.1112/jlms/s2-2.2.323
  29. Takahashi, R., White, D., 10.7146/math.scand.a-15121, Math. Scand. 106 (2010), 5-22. (2010) Zbl1193.13012MR2603458DOI10.7146/math.scand.a-15121
  30. Tang, X., 10.5486/PMD.2012.4907, Publ. Math. Debr. 80 (2012), 311-326. (2012) Zbl1274.16005MR2943005DOI10.5486/PMD.2012.4907
  31. Vasconcelos, W. V., 10.1016/s0304-0208(08)x7021-5, North-Holland Mathematics Studies 14. North-Holland, Amsterdam (1974). (1974) Zbl0296.13005MR0498530DOI10.1016/s0304-0208(08)x7021-5
  32. Yan, X. G., Zhu, X. S., 10.1007/s10587-011-0036-8, Czech. Math. J. 61 (2011), 641-652. (2011) Zbl1249.13004MR2853080DOI10.1007/s10587-011-0036-8
  33. Zhang, D., Ouyang, B., 10.1142/S0219498811005695, J. Algebra Appl. 10 (2011), 1261-1282. (2011) Zbl1254.16003MR2864574DOI10.1142/S0219498811005695

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.