Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces
Applications of Mathematics (2024)
- Volume: 69, Issue: 6, page 757-767
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topYu, Yanghai, and Liu, Fang. "Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces." Applications of Mathematics 69.6 (2024): 757-767. <http://eudml.org/doc/299613>.
@article{Yu2024,
abstract = {We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from $u_0$ are discontinuous at $t = 0$.},
author = {Yu, Yanghai, Liu, Fang},
journal = {Applications of Mathematics},
keywords = {Navier-Stokes equation; Euler equation; ill-posedness; Besov space},
language = {eng},
number = {6},
pages = {757-767},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces},
url = {http://eudml.org/doc/299613},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Yu, Yanghai
AU - Liu, Fang
TI - Ill-posedness for the Navier-Stokes and Euler equations in Besov spaces
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 6
SP - 757
EP - 767
AB - We construct a new initial data to prove the ill-posedness of both Navier-Stokes and Euler equations in weaker Besov spaces in the sense that the solution maps to these equations starting from $u_0$ are discontinuous at $t = 0$.
LA - eng
KW - Navier-Stokes equation; Euler equation; ill-posedness; Besov space
UR - http://eudml.org/doc/299613
ER -
References
top- Bahouri, H., Chemin, J.-Y., Danchin, R., 10.1007/978-3-642-16830-7, Grundlehren der Mathematischen Wissenschaften 343. Springer, Berlin (2011). (2011) Zbl1227.35004MR2768550DOI10.1007/978-3-642-16830-7
- Bourgain, J., Li, D., 10.1007/s00222-014-0548-6, Invent. Math. 201 (2015), 97-157. (2015) Zbl1320.35266MR3359050DOI10.1007/s00222-014-0548-6
- Bourgain, J., Li, D., 10.1007/s00039-015-0311-1, Geom. Funct. Anal. 25 (2015), 1-86. (2015) Zbl1480.35316MR3320889DOI10.1007/s00039-015-0311-1
- Cheskidov, A., Dai, M., 10.1016/j.jmaa.2019.123493, J. Math. Anal. Appl. 481 (2020), Article ID 13493, 16 pages. (2020) Zbl1426.35057MR4007200DOI10.1016/j.jmaa.2019.123493
- Cheskidov, A., Shvydkoy, R., 10.1090/S0002-9939-09-10141-7, Proc. Am. Math. Soc. 138 (2010), 1059-1067. (2010) Zbl1423.76085MR2566571DOI10.1090/S0002-9939-09-10141-7
- Guo, Z., Li, J., Yin, Z., 10.1016/j.jfa.2018.07.004, J. Funct. Anal. 276 (2019), 2821-2830. (2019) Zbl1412.35218MR3926133DOI10.1016/j.jfa.2018.07.004
- Kato, T., Lai, C. Y., 10.1016/0022-1236(84)90024-7, J. Funct. Anal. 56 (1984), 15-28. (1984) Zbl0545.76007MR0735703DOI10.1016/0022-1236(84)90024-7
- Kato, T., Ponce, G., 10.1215/S0012-7094-87-05526-8, Duke Math. J. 55 (1987), 487-499. (1987) Zbl0649.76011MR0904939DOI10.1215/S0012-7094-87-05526-8
- Li, J., Yu, Y., Zhu, W., 10.1016/j.nonrwa.2023.103941, Nonlinear Anal., Real World Appl. 74 (2023), Article ID 103941, 9 pages. (2023) Zbl1529.35358MR4604351DOI10.1016/j.nonrwa.2023.103941
- Misiołek, G., Yoneda, T., 10.1007/s00208-015-1213-0, Math. Ann. 363 (2016), 243-268. (2016) Zbl1336.35280MR3451386DOI10.1007/s00208-015-1213-0
- Misiołek, G., Yoneda, T., 10.1090/tran/7101, Trans. Am. Math. Soc. 370 (2018), 4709-4730. (2018) Zbl1388.35160MR3812093DOI10.1090/tran/7101
- Pak, H. C., Park, Y. J., 10.1081/PDE-200033764, Commun. Partial Differ. Equations 29 (2004), 1149-1166. (2004) Zbl1091.76006MR2097579DOI10.1081/PDE-200033764
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.