Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions
Zesheng Feng; Aiping Zhang; Hongya Gao
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1165-1184
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFeng, Zesheng, Zhang, Aiping, and Gao, Hongya. "Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions." Czechoslovak Mathematical Journal 74.4 (2024): 1165-1184. <http://eudml.org/doc/299614>.
@article{Feng2024,
abstract = {This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi’s iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function $g$, and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.},
author = {Feng, Zesheng, Zhang, Aiping, Gao, Hongya},
journal = {Czechoslovak Mathematical Journal},
keywords = {local boundedness; minimizer; variational integral; anisotropic growth; convex; polyconvex},
language = {eng},
number = {4},
pages = {1165-1184},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions},
url = {http://eudml.org/doc/299614},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Feng, Zesheng
AU - Zhang, Aiping
AU - Gao, Hongya
TI - Local boundedness for minimizers of variational integrals under anisotropic nonstandard growth conditions
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1165
EP - 1184
AB - This paper deals with local boundedness for minimizers of vectorial integrals under anisotropic growth conditions by using De Giorgi’s iterative method. We consider integral functionals with the first part of the integrand satisfying anisotropic growth conditions including a convex nondecreasing function $g$, and with the second part, a convex lower order term or a polyconvex lower order term. Local boundedness of minimizers is derived.
LA - eng
KW - local boundedness; minimizer; variational integral; anisotropic growth; convex; polyconvex
UR - http://eudml.org/doc/299614
ER -
References
top- Acerbi, E., Fusco, N., 10.1006/jdeq.1994.1002, J. Differ. Equations 107 (1994), 46-67. (1994) Zbl0807.49010MR1260848DOI10.1006/jdeq.1994.1002
- Cupini, G., Focardi, M., Leonetti, F., Mascolo, E., 10.1515/anona-2020-0039, Adv. Nonlinear Anal. 9 (2020), 1008-1025. (2020) Zbl1429.49042MR3998218DOI10.1515/anona-2020-0039
- Cupini, G., Leonetti, F., Mascolo, E., 10.1007/s00205-017-1074-7, Arch. Ration. Mech. Anal. 224 (2017), 269-289. (2017) Zbl1365.49035MR3609252DOI10.1007/s00205-017-1074-7
- Cupini, G., Marcellini, P., Mascolo, E., 10.3934/dcdsb.2009.11.67, Discrete Contin. Dyn. Syst., Ser. B 11 (2009), 67-86. (2009) Zbl1158.49040MR2461809DOI10.3934/dcdsb.2009.11.67
- Cupini, G., Marcellini, P., Mascolo, E., 10.1007/s10957-015-0722-z, J. Optim. Theory Appl. 166 (2015), 1-22. (2015) Zbl1325.49043MR3366102DOI10.1007/s10957-015-0722-z
- Cupini, G., Marcellini, P., Mascolo, E., 10.1016/j.na.2016.06.002, Nonlinear Anal., Theory Methods Appl., Ser. A 153 (2017), 294-310. (2017) Zbl1358.49032MR3614673DOI10.1016/j.na.2016.06.002
- Fusco, N., Sbordone, C., 10.1007/BF02567909, Manuscr. Math. 69 (1990), 19-25. (1990) Zbl0722.49012MR1070292DOI10.1007/BF02567909
- Giusti, E., 10.1142/5002, World Scientific, Singapore (2003). (2003) Zbl1028.49001MR1962933DOI10.1142/5002
- Granucci, T., Randolfi, M., 10.1007/s00229-021-01360-0, Manuscr. Math. 170 (2023), 677-772. (2023) Zbl1512.49038MR4548604DOI10.1007/s00229-021-01360-0
- Han, Y., Fang, M., Xia, L., Gao, H., 10.48550/arXiv.2402.09455, Available at https://arxiv.org/abs/2402.09455 (2024), 26 pages. (2024) DOI10.48550/arXiv.2402.09455
- Leonetti, F., Petricca, P. V., 10.1016/j.na.2015.09.009, Nonlinear Anal., Theory Methods Appl., Ser. A 129 (2015), 258-264. (2015) Zbl1327.49064MR3414930DOI10.1016/j.na.2015.09.009
- Marcellini, P., 10.1007/BF00251503, Arch. Ration. Mech. Anal. 105 (1989), 267-284. (1989) Zbl0667.49032MR0969900DOI10.1007/BF00251503
- Marcellini, P., 10.1016/0022-0396(91)90158-6, J. Differ. Equations 90 (1991), 1-30. (1991) Zbl0724.35043MR1094446DOI10.1016/0022-0396(91)90158-6
- Troisi, M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ric. Mat. 18 (1969), 3-24 Italian. (1969) Zbl0182.16802MR0415302
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.