The relationship between K u 2 v H 2 and inner functions

Xiaoyuan Yang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1221-1240
  • ISSN: 0011-4642

Abstract

top
Let u be an inner function and K u 2 be the corresponding model space. For an inner function v , the subspace v H 2 is an invariant subspace of the unilateral shift operator on H 2 . In this article, using the structure of a Toeplitz kernel ker T u ¯ v , we study the intersection K u 2 v H 2 by properties of inner functions u and v ( v u ) . If K u 2 v H 2 { 0 } , then there exists a triple ( B , b , g ) such that u ¯ v = λ b B O g ¯ g , where the triple ( B , b , g ) means that B and b are Blaschke products, g is an invertible function in H , O g denotes the outer factor of g , and λ is some constant with | λ | = 1 . Furthermore, for any nonconstant inner function u , there exists a Blaschke product B such that K B 2 u H 2 { 0 } . In particular, we discuss the finite-dimensional intersection K u 2 v H 2 . Moreover, we investigate connections between minimal Toeplitz kernels and K u 2 v H 2 .

How to cite

top

Yang, Xiaoyuan. "The relationship between $K_u^2\cap vH^2$ and inner functions." Czechoslovak Mathematical Journal 74.4 (2024): 1221-1240. <http://eudml.org/doc/299626>.

@article{Yang2024,
abstract = {Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel $\{\rm ker\} T_\{\overline\{u\}v\}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$$(v\ne u)$. If $K_u^2\cap vH^2\ne \lbrace 0\rbrace $, then there exists a triple $(B,b,g)$ such that \[\overline\{u\}v=\frac\{\lambda b\overline\{BO\_g\}\}\{g\},\] where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\ne \lbrace 0\rbrace .$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.},
author = {Yang, Xiaoyuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function},
language = {eng},
number = {4},
pages = {1221-1240},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The relationship between $K_u^2\cap vH^2$ and inner functions},
url = {http://eudml.org/doc/299626},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Yang, Xiaoyuan
TI - The relationship between $K_u^2\cap vH^2$ and inner functions
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1221
EP - 1240
AB - Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline{u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$$(v\ne u)$. If $K_u^2\cap vH^2\ne \lbrace 0\rbrace $, then there exists a triple $(B,b,g)$ such that \[\overline{u}v=\frac{\lambda b\overline{BO_g}}{g},\] where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\ne \lbrace 0\rbrace .$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
LA - eng
KW - model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
UR - http://eudml.org/doc/299626
ER -

References

top
  1. Axler, S., Chang, S. A., Sarason, D., 10.1007/BF01682841, Integral Equations Oper. Theory 1 (1978), 285-309. (1978) Zbl0396.47017MR0511973DOI10.1007/BF01682841
  2. Benhida, C., Fricain, E., Timotin, D., Reducing subspaces of C 00 contractions, New York J. Math. 27 (2021), 1597-1612. (2021) Zbl07474337MR4359207
  3. Beurling, A., 10.1007/BF02395019, Acta Math., Uppsala 81 (1949), 239-255. (1949) Zbl0033.37701MR0027954DOI10.1007/BF02395019
  4. Câmara, M. C., Partington, J. R., 10.1016/j.jmaa.2018.05.023, J. Math. Anal. Appl. 465 (2018), 557-570. (2018) Zbl1391.42010MR3806717DOI10.1016/j.jmaa.2018.05.023
  5. Câmara, M. C., Partington, J. R., 10.1007/978-3-319-75996-8_7, The Diversity and Beauty of Applied Operator Theory Operator Theory: Advances and Applications 268. Springer, Cham (2018), 139-153. (2018) MR3793302DOI10.1007/978-3-319-75996-8_7
  6. Douglas, R. G., 10.1090/cbms/015, Regional Conference Series in Mathematics 15. AMS, Providence (1973). (1973) Zbl0252.47025MR0361894DOI10.1090/cbms/015
  7. Fricain, E., Hartmann, A., Ross, W. T., 10.4064/sm8782-4-2017, Stud. Math. 240 (2018), 177-191. (2018) Zbl1394.30043MR3720929DOI10.4064/sm8782-4-2017
  8. Garcia, S. R., Ross, W. T., 10.1090/conm/638, Invariant Subspaces of the Shift Operator Contemporary Mathematics 638. AMS, Providence (2015), 197-245. (2015) Zbl1353.47016MR3309355DOI10.1090/conm/638
  9. Garnett, J. B., 10.1007/0-387-49763-3, Graduate Texts in Mathematics 236. Springer, New York (2007). (2007) Zbl1106.30001MR2261424DOI10.1007/0-387-49763-3
  10. Hartmann, A., Mitkovski, M., 10.1090/conm/679, Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions Contemporary Mathematics 679. AMS, Providence (2016), 147-177. (2016) Zbl1375.30084MR3589674DOI10.1090/conm/679
  11. Hayashi, E., 10.1007/BF01204630, Integral Equations Oper. Theory 9 (1986), 588-591. (1986) Zbl0636.47023MR0853630DOI10.1007/BF01204630
  12. Martínez-Avendaño, R. A., Rosenthal, P., 10.1007/978-0-387-48578-2, Graduate Texts in Mathematics 237. Springer, New York (2007). (2007) Zbl1116.47001MR2270722DOI10.1007/978-0-387-48578-2
  13. Nikolski, N. K., 10.1090/surv/092, Mathematical Surveys and Monographs 92. AMS, Providence (2002). (2002) Zbl1007.47001MR1864396DOI10.1090/surv/092
  14. Sarason, D., 10.7153/oam-01-29, Oper. Matrices 1 (2007), 491-526. (2007) Zbl1144.47026MR2363975DOI10.7153/oam-01-29
  15. Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L., 10.1007/978-1-4419-6094-8, Universitext. Springer, New York (2010). (2010) Zbl1234.47001MR2760647DOI10.1007/978-1-4419-6094-8
  16. Yang, X., 10.37256/cm.5220243835, Contemp. Math. 5 (2024), 1474-1486. (2024) DOI10.37256/cm.5220243835
  17. Yang, X., Li, R., Lu, Y., 10.3906/mat-2102-109, Turk. J. Math. 45 (2021), 2180-2198. (2021) Zbl07578944MR4316916DOI10.3906/mat-2102-109
  18. Yang, X., Li, R., Yang, Y., Lu, Y., 10.1016/j.jmaa.2022.126032, J. Math. Anal. Appl. 510 (2022), Article ID 126032, 26 pages. (2022) Zbl07474373MR4372793DOI10.1016/j.jmaa.2022.126032
  19. Yang, X., Lu, Y., Yang, Y., 10.1007/s43034-022-00196-3, Ann. Funct. Anal. 13 (2022), Article ID 49, 21 pages. (2022) Zbl07548894MR4446266DOI10.1007/s43034-022-00196-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.