The relationship between and inner functions
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1221-1240
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYang, Xiaoyuan. "The relationship between $K_u^2\cap vH^2$ and inner functions." Czechoslovak Mathematical Journal 74.4 (2024): 1221-1240. <http://eudml.org/doc/299626>.
@article{Yang2024,
abstract = {Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel $\{\rm ker\} T_\{\overline\{u\}v\}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$$(v\ne u)$. If $K_u^2\cap vH^2\ne \lbrace 0\rbrace $, then there exists a triple $(B,b,g)$ such that \[\overline\{u\}v=\frac\{\lambda b\overline\{BO\_g\}\}\{g\},\]
where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\ne \lbrace 0\rbrace .$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.},
author = {Yang, Xiaoyuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function},
language = {eng},
number = {4},
pages = {1221-1240},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The relationship between $K_u^2\cap vH^2$ and inner functions},
url = {http://eudml.org/doc/299626},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Yang, Xiaoyuan
TI - The relationship between $K_u^2\cap vH^2$ and inner functions
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1221
EP - 1240
AB - Let $u$ be an inner function and $K_u^2$ be the corresponding model space. For an inner function $v$, the subspace $vH^2$ is an invariant subspace of the unilateral shift operator on $H^2$. In this article, using the structure of a Toeplitz kernel ${\rm ker} T_{\overline{u}v}$, we study the intersection $K_u^2\cap vH^2$ by properties of inner functions $u$ and $v$$(v\ne u)$. If $K_u^2\cap vH^2\ne \lbrace 0\rbrace $, then there exists a triple $(B,b,g)$ such that \[\overline{u}v=\frac{\lambda b\overline{BO_g}}{g},\]
where the triple $(B,b,g)$ means that $B$ and $b$ are Blaschke products, $g$ is an invertible function in $H^\infty $, $O_g$ denotes the outer factor of $g$, and $\lambda $ is some constant with $|\lambda |=1.$ Furthermore, for any nonconstant inner function $u$, there exists a Blaschke product $B$ such that $K_B^2\cap uH^2\ne \lbrace 0\rbrace .$ In particular, we discuss the finite-dimensional intersection $K_u^2 \cap vH^2$. Moreover, we investigate connections between minimal Toeplitz kernels and $K_u^2\cap vH^2$.
LA - eng
KW - model space; invariant subspace of the unilateral shift operator; Toeplitz kernel; inner function
UR - http://eudml.org/doc/299626
ER -
References
top- Axler, S., Chang, S. A., Sarason, D., 10.1007/BF01682841, Integral Equations Oper. Theory 1 (1978), 285-309. (1978) Zbl0396.47017MR0511973DOI10.1007/BF01682841
- Benhida, C., Fricain, E., Timotin, D., Reducing subspaces of contractions, New York J. Math. 27 (2021), 1597-1612. (2021) Zbl07474337MR4359207
- Beurling, A., 10.1007/BF02395019, Acta Math., Uppsala 81 (1949), 239-255. (1949) Zbl0033.37701MR0027954DOI10.1007/BF02395019
- Câmara, M. C., Partington, J. R., 10.1016/j.jmaa.2018.05.023, J. Math. Anal. Appl. 465 (2018), 557-570. (2018) Zbl1391.42010MR3806717DOI10.1016/j.jmaa.2018.05.023
- Câmara, M. C., Partington, J. R., 10.1007/978-3-319-75996-8_7, The Diversity and Beauty of Applied Operator Theory Operator Theory: Advances and Applications 268. Springer, Cham (2018), 139-153. (2018) MR3793302DOI10.1007/978-3-319-75996-8_7
- Douglas, R. G., 10.1090/cbms/015, Regional Conference Series in Mathematics 15. AMS, Providence (1973). (1973) Zbl0252.47025MR0361894DOI10.1090/cbms/015
- Fricain, E., Hartmann, A., Ross, W. T., 10.4064/sm8782-4-2017, Stud. Math. 240 (2018), 177-191. (2018) Zbl1394.30043MR3720929DOI10.4064/sm8782-4-2017
- Garcia, S. R., Ross, W. T., 10.1090/conm/638, Invariant Subspaces of the Shift Operator Contemporary Mathematics 638. AMS, Providence (2015), 197-245. (2015) Zbl1353.47016MR3309355DOI10.1090/conm/638
- Garnett, J. B., 10.1007/0-387-49763-3, Graduate Texts in Mathematics 236. Springer, New York (2007). (2007) Zbl1106.30001MR2261424DOI10.1007/0-387-49763-3
- Hartmann, A., Mitkovski, M., 10.1090/conm/679, Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions Contemporary Mathematics 679. AMS, Providence (2016), 147-177. (2016) Zbl1375.30084MR3589674DOI10.1090/conm/679
- Hayashi, E., 10.1007/BF01204630, Integral Equations Oper. Theory 9 (1986), 588-591. (1986) Zbl0636.47023MR0853630DOI10.1007/BF01204630
- Martínez-Avendaño, R. A., Rosenthal, P., 10.1007/978-0-387-48578-2, Graduate Texts in Mathematics 237. Springer, New York (2007). (2007) Zbl1116.47001MR2270722DOI10.1007/978-0-387-48578-2
- Nikolski, N. K., 10.1090/surv/092, Mathematical Surveys and Monographs 92. AMS, Providence (2002). (2002) Zbl1007.47001MR1864396DOI10.1090/surv/092
- Sarason, D., 10.7153/oam-01-29, Oper. Matrices 1 (2007), 491-526. (2007) Zbl1144.47026MR2363975DOI10.7153/oam-01-29
- Sz.-Nagy, B., Foias, C., Bercovici, H., Kérchy, L., 10.1007/978-1-4419-6094-8, Universitext. Springer, New York (2010). (2010) Zbl1234.47001MR2760647DOI10.1007/978-1-4419-6094-8
- Yang, X., 10.37256/cm.5220243835, Contemp. Math. 5 (2024), 1474-1486. (2024) DOI10.37256/cm.5220243835
- Yang, X., Li, R., Lu, Y., 10.3906/mat-2102-109, Turk. J. Math. 45 (2021), 2180-2198. (2021) Zbl07578944MR4316916DOI10.3906/mat-2102-109
- Yang, X., Li, R., Yang, Y., Lu, Y., 10.1016/j.jmaa.2022.126032, J. Math. Anal. Appl. 510 (2022), Article ID 126032, 26 pages. (2022) Zbl07474373MR4372793DOI10.1016/j.jmaa.2022.126032
- Yang, X., Lu, Y., Yang, Y., 10.1007/s43034-022-00196-3, Ann. Funct. Anal. 13 (2022), Article ID 49, 21 pages. (2022) Zbl07548894MR4446266DOI10.1007/s43034-022-00196-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.