Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition
Applications of Mathematics (2024)
- Volume: 69, Issue: 6, page 769-805
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topIshizaka, Hiroki. "Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition." Applications of Mathematics 69.6 (2024): 769-805. <http://eudml.org/doc/299636>.
@article{Ishizaka2024,
abstract = {We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.},
author = {Ishizaka, Hiroki},
journal = {Applications of Mathematics},
keywords = {Morley finite element; anisotropic interpolation error; fourth-order elliptic problem},
language = {eng},
number = {6},
pages = {769-805},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition},
url = {http://eudml.org/doc/299636},
volume = {69},
year = {2024},
}
TY - JOUR
AU - Ishizaka, Hiroki
TI - Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 6
SP - 769
EP - 805
AB - We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.
LA - eng
KW - Morley finite element; anisotropic interpolation error; fourth-order elliptic problem
UR - http://eudml.org/doc/299636
ER -
References
top- Acosta, G., Apel, T., Durán, R. G., Lombardi, L., 10.1090/S0025-5718-2010-02406-8, Math. Comput. 80 (2011), 141-163. (2011) Zbl1223.65086MR2728975DOI10.1090/S0025-5718-2010-02406-8
- Acosta, G., Durán, R. G., 10.1137/S0036142997331293, SIAM J. Numer. Anal. 37 (1999), 18-36. (1999) Zbl0948.65115MR1721268DOI10.1137/S0036142997331293
- Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999). (1999) Zbl0934.65121MR1716824
- Apel, T., Dobrowolski, M., 10.1007/BF02320197, Computing 47 (1992), 277-293. (1992) Zbl0746.65077MR1155498DOI10.1007/BF02320197
- Apel, T., Nicaise, S., Schöberl, J., 10.1007/PL00005466, Numer. Math. 89 (2001), 193-223. (2001) Zbl0989.65130MR1855825DOI10.1007/PL00005466
- Arnold, D. N., Brezzi, F., 10.1051/m2an/1985190100071, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 7-32. (1985) Zbl0567.65078MR0813687DOI10.1051/m2an/1985190100071
- Babuška, I., Aziz, A. K., 10.1137/071302, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/071302
- Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15. Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
- Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 28 (1958), 258-267. (1958) Zbl1431.35066DOI10.1063/1.1744102
- Ciarlet, P. G., 10.1137/1.9780898719208, Classics in Applied Mathematics 40. SIAM, New York (2002). (2002) Zbl0999.65129MR1930132DOI10.1137/1.9780898719208
- Durán, R. G., Lombardi, A. L., 10.1137/060665312, SIAM J. Numer. Anal. 46 (2008), 1442-1453. (2008) Zbl1168.65061MR2391001DOI10.1137/060665312
- Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159. Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
- Ern, A., Guermond, J.-L., 10.1007/978-3-030-56341-7, Texts in Applied Mathematics 72. Springer, Cham (2021). (2021) Zbl1476.65003MR4242224DOI10.1007/978-3-030-56341-7
- Falk, R. S., Morley, M. E., 10.1137/072708, SIAM J. Numer. Anal. 27 (1990), 1486-1505. (1990) Zbl0722.73068MR1080333DOI10.1137/072708
- Farhloul, M., Nicaise, S., Paquet, L., 10.1051/m2an:2001142, M2AN, Math. Model. Numer. Anal. 35 (2001), 907-920. (2001) Zbl0990.65129MR1866274DOI10.1051/m2an:2001142
- Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5. Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
- Grisvard, P., Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées 22. Masson, Paris (1992). (1992) Zbl0766.35001MR1173209
- Grisvard, P., 10.1137/1.9781611972030.ch1, Classics in Applied Mathematics 69. SIAM, Philadelphia (2011). (2011) Zbl1231.35002MR3396210DOI10.1137/1.9781611972030.ch1
- Ishizaka, H., 10.1007/s10092-022-00494-1, Calcolo 59 (2022), Article ID 50, 27 pages. (2022) Zbl1506.65215MR4514907DOI10.1007/s10092-022-00494-1
- Ishizaka, H., Kobayashi, K., Tsuchiya, T., 10.1007/s13160-020-00433-z, Japan J. Ind. Appl. Math. 38 (2021), 163-191. (2021) Zbl1467.65009MR4213001DOI10.1007/s13160-020-00433-z
- Ishizaka, H., Kobayashi, K., Tsuchiya, T., 10.1007/s13160-022-00535-w, Japan J. Ind. Appl. Math. 40 (2023), 475-512. (2023) Zbl1509.65007MR4528995DOI10.1007/s13160-022-00535-w
- John, V., 10.1007/978-3-319-45750-5, Springer Series in Computational Mathematics 51. Springer, Cham (2016). (2016) Zbl1358.76003MR3561143DOI10.1007/978-3-319-45750-5
- Kellogg, R. B., Osborn, J. E., 10.1016/0022-1236(76)90035-5, J. Funct. Anal. 21 (1976), 397-431. (1976) Zbl0317.35037MR0404849DOI10.1016/0022-1236(76)90035-5
- Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
- Lascaux, P., Lesaint, P., 10.1051/m2an/197509R100091, Rev. Franc. Automat. Inform. Rech. Operat. 9 (1975), 9-53. (1975) Zbl0319.73042MR0423968DOI10.1051/m2an/197509R100091
- Linke, A., 10.1016/j.cma.2013.10.011, Comput. Methods Appl. Mech. Eng. 268 (2014), 782-800. (2014) Zbl1295.76007MR3133522DOI10.1016/j.cma.2013.10.011
- Mao, S., Nicaise, S., Shi, Z.-C., Error estimates of Morley triangular element satisfying the maximal angle condition, Int. J. Numer. Anal. Model. 7 (2010), 639-655. (2010) Zbl1407.74089MR2644296
- Ming, W., Xu, J., 10.1007/s00211-005-0662-x, Numer. Math. 103 (2006), 155-169. (2006) Zbl1092.65103MR2207619DOI10.1007/s00211-005-0662-x
- Morley, L. S. D., 10.1017/S0001925900004546, Aero Quart. 19 (1968), 149-169. (1968) DOI10.1017/S0001925900004546
- Nilssen, T. K., Tai, X.-C., Winther, R., 10.1090/S0025-5718-00-01230-8, Math. Comput. 70 (2001), 489-505. (2001) Zbl0965.65127MR1709156DOI10.1090/S0025-5718-00-01230-8
- Rannacher, R., Finite element approximation of supported plates and the Babuška paradox, Z. Angew. Math. Mech. 59 (1979), T73--T76. (1979) Zbl0421.73072MR0533989
- Rannacher, R., 10.1051/m2an/1979130403691, RAIRO, Anal. Numér. 13 (1979), 369-387. (1979) Zbl0425.35042MR0555385DOI10.1051/m2an/1979130403691
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.