Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition

Hiroki Ishizaka

Applications of Mathematics (2024)

  • Volume: 69, Issue: 6, page 769-805
  • ISSN: 0862-7940

Abstract

top
We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.

How to cite

top

Ishizaka, Hiroki. "Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition." Applications of Mathematics 69.6 (2024): 769-805. <http://eudml.org/doc/299636>.

@article{Ishizaka2024,
abstract = {We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.},
author = {Ishizaka, Hiroki},
journal = {Applications of Mathematics},
keywords = {Morley finite element; anisotropic interpolation error; fourth-order elliptic problem},
language = {eng},
number = {6},
pages = {769-805},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition},
url = {http://eudml.org/doc/299636},
volume = {69},
year = {2024},
}

TY - JOUR
AU - Ishizaka, Hiroki
TI - Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition
JO - Applications of Mathematics
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 69
IS - 6
SP - 769
EP - 805
AB - We present a precise anisotropic interpolation error estimate for the Morley finite element method (FEM) and apply it to fourth-order elliptic equations. We do not impose the shape-regularity mesh condition in the analysis. Anisotropic meshes can be used for this purpose. The main contributions of this study include providing a new proof of the term consistency. This enables us to obtain an anisotropic consistency error estimate. The core idea of the proof involves using the relationship between the Raviart-Thomas and Morley finite-element spaces. Our results indicate optimal convergence rates and imply that the modified Morley FEM may be effective for errors.
LA - eng
KW - Morley finite element; anisotropic interpolation error; fourth-order elliptic problem
UR - http://eudml.org/doc/299636
ER -

References

top
  1. Acosta, G., Apel, T., Durán, R. G., Lombardi, L., 10.1090/S0025-5718-2010-02406-8, Math. Comput. 80 (2011), 141-163. (2011) Zbl1223.65086MR2728975DOI10.1090/S0025-5718-2010-02406-8
  2. Acosta, G., Durán, R. G., 10.1137/S0036142997331293, SIAM J. Numer. Anal. 37 (1999), 18-36. (1999) Zbl0948.65115MR1721268DOI10.1137/S0036142997331293
  3. Apel, T., Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics. B. G. Teubner, Stuttgart (1999). (1999) Zbl0934.65121MR1716824
  4. Apel, T., Dobrowolski, M., 10.1007/BF02320197, Computing 47 (1992), 277-293. (1992) Zbl0746.65077MR1155498DOI10.1007/BF02320197
  5. Apel, T., Nicaise, S., Schöberl, J., 10.1007/PL00005466, Numer. Math. 89 (2001), 193-223. (2001) Zbl0989.65130MR1855825DOI10.1007/PL00005466
  6. Arnold, D. N., Brezzi, F., 10.1051/m2an/1985190100071, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 7-32. (1985) Zbl0567.65078MR0813687DOI10.1051/m2an/1985190100071
  7. Babuška, I., Aziz, A. K., 10.1137/071302, SIAM J. Numer. Anal. 13 (1976), 214-226. (1976) Zbl0324.65046MR0455462DOI10.1137/071302
  8. Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15. Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
  9. Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 28 (1958), 258-267. (1958) Zbl1431.35066DOI10.1063/1.1744102
  10. Ciarlet, P. G., 10.1137/1.9780898719208, Classics in Applied Mathematics 40. SIAM, New York (2002). (2002) Zbl0999.65129MR1930132DOI10.1137/1.9780898719208
  11. Durán, R. G., Lombardi, A. L., 10.1137/060665312, SIAM J. Numer. Anal. 46 (2008), 1442-1453. (2008) Zbl1168.65061MR2391001DOI10.1137/060665312
  12. Ern, A., Guermond, J.-L., 10.1007/978-1-4757-4355-5, Applied Mathematical Sciences 159. Springer, New York (2004). (2004) Zbl1059.65103MR2050138DOI10.1007/978-1-4757-4355-5
  13. Ern, A., Guermond, J.-L., 10.1007/978-3-030-56341-7, Texts in Applied Mathematics 72. Springer, Cham (2021). (2021) Zbl1476.65003MR4242224DOI10.1007/978-3-030-56341-7
  14. Falk, R. S., Morley, M. E., 10.1137/072708, SIAM J. Numer. Anal. 27 (1990), 1486-1505. (1990) Zbl0722.73068MR1080333DOI10.1137/072708
  15. Farhloul, M., Nicaise, S., Paquet, L., 10.1051/m2an:2001142, M2AN, Math. Model. Numer. Anal. 35 (2001), 907-920. (2001) Zbl0990.65129MR1866274DOI10.1051/m2an:2001142
  16. Girault, V., Raviart, P.-A., 10.1007/978-3-642-61623-5, Springer Series in Computational Mathematics 5. Springer, Berlin (1986). (1986) Zbl0585.65077MR0851383DOI10.1007/978-3-642-61623-5
  17. Grisvard, P., Singularities in Boundary Value Problems, Recherches en Mathématiques Appliquées 22. Masson, Paris (1992). (1992) Zbl0766.35001MR1173209
  18. Grisvard, P., 10.1137/1.9781611972030.ch1, Classics in Applied Mathematics 69. SIAM, Philadelphia (2011). (2011) Zbl1231.35002MR3396210DOI10.1137/1.9781611972030.ch1
  19. Ishizaka, H., 10.1007/s10092-022-00494-1, Calcolo 59 (2022), Article ID 50, 27 pages. (2022) Zbl1506.65215MR4514907DOI10.1007/s10092-022-00494-1
  20. Ishizaka, H., Kobayashi, K., Tsuchiya, T., 10.1007/s13160-020-00433-z, Japan J. Ind. Appl. Math. 38 (2021), 163-191. (2021) Zbl1467.65009MR4213001DOI10.1007/s13160-020-00433-z
  21. Ishizaka, H., Kobayashi, K., Tsuchiya, T., 10.1007/s13160-022-00535-w, Japan J. Ind. Appl. Math. 40 (2023), 475-512. (2023) Zbl1509.65007MR4528995DOI10.1007/s13160-022-00535-w
  22. John, V., 10.1007/978-3-319-45750-5, Springer Series in Computational Mathematics 51. Springer, Cham (2016). (2016) Zbl1358.76003MR3561143DOI10.1007/978-3-319-45750-5
  23. Kellogg, R. B., Osborn, J. E., 10.1016/0022-1236(76)90035-5, J. Funct. Anal. 21 (1976), 397-431. (1976) Zbl0317.35037MR0404849DOI10.1016/0022-1236(76)90035-5
  24. Křížek, M., 10.1137/0729031, SIAM J. Numer. Anal. 29 (1992), 513-520. (1992) Zbl0755.41003MR1154279DOI10.1137/0729031
  25. Lascaux, P., Lesaint, P., 10.1051/m2an/197509R100091, Rev. Franc. Automat. Inform. Rech. Operat. 9 (1975), 9-53. (1975) Zbl0319.73042MR0423968DOI10.1051/m2an/197509R100091
  26. Linke, A., 10.1016/j.cma.2013.10.011, Comput. Methods Appl. Mech. Eng. 268 (2014), 782-800. (2014) Zbl1295.76007MR3133522DOI10.1016/j.cma.2013.10.011
  27. Mao, S., Nicaise, S., Shi, Z.-C., Error estimates of Morley triangular element satisfying the maximal angle condition, Int. J. Numer. Anal. Model. 7 (2010), 639-655. (2010) Zbl1407.74089MR2644296
  28. Ming, W., Xu, J., 10.1007/s00211-005-0662-x, Numer. Math. 103 (2006), 155-169. (2006) Zbl1092.65103MR2207619DOI10.1007/s00211-005-0662-x
  29. Morley, L. S. D., 10.1017/S0001925900004546, Aero Quart. 19 (1968), 149-169. (1968) DOI10.1017/S0001925900004546
  30. Nilssen, T. K., Tai, X.-C., Winther, R., 10.1090/S0025-5718-00-01230-8, Math. Comput. 70 (2001), 489-505. (2001) Zbl0965.65127MR1709156DOI10.1090/S0025-5718-00-01230-8
  31. Rannacher, R., Finite element approximation of supported plates and the Babuška paradox, Z. Angew. Math. Mech. 59 (1979), T73--T76. (1979) Zbl0421.73072MR0533989
  32. Rannacher, R., 10.1051/m2an/1979130403691, RAIRO, Anal. Numér. 13 (1979), 369-387. (1979) Zbl0425.35042MR0555385DOI10.1051/m2an/1979130403691

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.