Transfer of derived equivalences from subalgebras to endomorphism algebras II
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1041-1058
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPan, Shengyong, and Yu, Jiahui. "Transfer of derived equivalences from subalgebras to endomorphism algebras II." Czechoslovak Mathematical Journal 74.4 (2024): 1041-1058. <http://eudml.org/doc/299638>.
@article{Pan2024,
abstract = {We investigate derived equivalences between subalgebras of some $\Phi $-Auslander-Yoneda algebras from a class of $n$-angles in weakly $n$-angulated categories. The derived equivalences are obtained by transferring subalgebras induced by $n$-angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to $n$-angle cases. Finally, we give an explicit example to illustrate our result.},
author = {Pan, Shengyong, Yu, Jiahui},
journal = {Czechoslovak Mathematical Journal},
keywords = {approximation; derived equivalence; subring; endomorphism algebra; Auslander-Yoneda algebra},
language = {eng},
number = {4},
pages = {1041-1058},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Transfer of derived equivalences from subalgebras to endomorphism algebras II},
url = {http://eudml.org/doc/299638},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Pan, Shengyong
AU - Yu, Jiahui
TI - Transfer of derived equivalences from subalgebras to endomorphism algebras II
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1041
EP - 1058
AB - We investigate derived equivalences between subalgebras of some $\Phi $-Auslander-Yoneda algebras from a class of $n$-angles in weakly $n$-angulated categories. The derived equivalences are obtained by transferring subalgebras induced by $n$-angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to $n$-angle cases. Finally, we give an explicit example to illustrate our result.
LA - eng
KW - approximation; derived equivalence; subring; endomorphism algebra; Auslander-Yoneda algebra
UR - http://eudml.org/doc/299638
ER -
References
top- Aihara, T., Iyama, O., 10.1112/jlms/jdr055, J. Lond. Math. Soc., II. Ser. 85 (2012), 633-668. (2012) Zbl1271.18011MR2927802DOI10.1112/jlms/jdr055
- Brüstle, T., Pan, S., 10.1142/S0219498816501000, J. Algebra Appl. 15 (2016), Article ID 1650100, 10 pages. (2016) Zbl1345.18010MR3479804DOI10.1142/S0219498816501000
- Buan, A. B., Marsh, R. B., Reineke, M., Reiten, I., Todorov, G., 10.1016/j.aim.2005.06.003, Adv. Math. 204 (2006), 572-618. (2006) Zbl1127.16011MR2249625DOI10.1016/j.aim.2005.06.003
- Chen, Y., 10.1007/s10468-012-9377-8, Algebr. Represent. Theory 16 (2013), 1661-1684. (2013) Zbl1291.18016MR3127353DOI10.1007/s10468-012-9377-8
- Chen, Y., 10.1080/00927872.2013.804925, Commun. Algebra 42 (2014), 4055-4065. (2014) Zbl1312.16004MR3200079DOI10.1080/00927872.2013.804925
- Chen, Y., Hu, W., 10.1017/prm.2018.120, Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 813-840. (2020) Zbl1442.18033MR4080461DOI10.1017/prm.2018.120
- Fedele, F., 10.1016/j.jpaa.2018.11.017, J. Pure App. Algebra 223 (2019), 3354-3580. (2019) Zbl1411.16017MR3926227DOI10.1016/j.jpaa.2018.11.017
- Geiss, C., Keller, B., Oppermann, S., 10.1515/CRELLE.2011.177, J. Reine Angew. Math. 675 (2013), 101-120. (2013) Zbl1271.18013MR3021448DOI10.1515/CRELLE.2011.177
- Happel, D., Unger, L., Complements and the generalized Nakayama conjecture, Algebras and Modules. II CMS Conference Proceedings 24. AMS, Providence (1998), 293-310. (1998) Zbl0944.16010MR1648633
- Hoshino, M., Kato, Y., 10.1016/S0022-4049(02)00176-7, J. Pure Appl. Algebra 177 (2003), 159-175. (2003) Zbl1012.18006MR1954331DOI10.1016/S0022-4049(02)00176-7
- Hu, W., Koenig, S., Xi, C., 10.1017/S030821051100045X, Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 589-629. (2013) Zbl1336.16014MR3063574DOI10.1017/S030821051100045X
- Hu, W., Xi, C., 10.1016/j.aim.2011.01.023, Adv. Math. 227 (2011), 292-318. (2011) Zbl1260.16017MR2782196DOI10.1016/j.aim.2011.01.023
- Hu, W., Xi, C., 10.1090/S0002-9947-2013-05688-7, Trans. Am. Math. Soc. 365 (2013), 5681-5711. (2013) Zbl1279.18008MR3091261DOI10.1090/S0002-9947-2013-05688-7
- Iyama, O., Oppermann, S., 10.1090/S0002-9947-2011-05312-2, Trans. Am. Math. Soc. 363 (2011), 6575-6614. (2011) Zbl1264.16015MR2833569DOI10.1090/S0002-9947-2011-05312-2
- Iyama, O., Yoshino, Y., 10.1007/s00222-007-0096-4, Invent. Math. 172 (2008), 117-168. (2008) Zbl1140.18007MR2385669DOI10.1007/s00222-007-0096-4
- Karoubi, M., 10.24033/asens.1163, Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270 French. (1968) Zbl0194.24101MR0238927DOI10.24033/asens.1163
- Neeman, A., 10.1515/9781400837212, Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). (2001) Zbl0974.18008MR1812507DOI10.1515/9781400837212
- Pan, S., 10.7146/math.scand.a-133541, Math. Scand. 128 (2022), 451-506. (2022) Zbl1531.16009MR4529806DOI10.7146/math.scand.a-133541
- Rickard, J., 10.1016/0022-4049(89)90081-9, J. Pure Appl. Algebra 61 (1989), 303-317. (1989) Zbl0685.16016MR1027750DOI10.1016/0022-4049(89)90081-9
- Rickard, J., 10.1112/jlms/s2-43.1.37, J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. (1991) Zbl0683.16030MR1099084DOI10.1112/jlms/s2-43.1.37
- Rudakov, A. N., 10.1017/CBO9780511721526.001, Helices and Vector Bundles London Mathematical Society Lecture Note Series 148. Cambridge Univerity Press, Cambridge (1990), 1-6. (1990) Zbl0721.14011MR1074777DOI10.1017/CBO9780511721526.001
- Xi, C., 10.1016/j.jpaa.2004.03.009, J. Pure Appl. Algebra 193 (2004), 287-305. (2004) Zbl1067.16016MR2076389DOI10.1016/j.jpaa.2004.03.009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.