Transfer of derived equivalences from subalgebras to endomorphism algebras II

Shengyong Pan; Jiahui Yu

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1041-1058
  • ISSN: 0011-4642

Abstract

top
We investigate derived equivalences between subalgebras of some Φ -Auslander-Yoneda algebras from a class of n -angles in weakly n -angulated categories. The derived equivalences are obtained by transferring subalgebras induced by n -angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to n -angle cases. Finally, we give an explicit example to illustrate our result.

How to cite

top

Pan, Shengyong, and Yu, Jiahui. "Transfer of derived equivalences from subalgebras to endomorphism algebras II." Czechoslovak Mathematical Journal 74.4 (2024): 1041-1058. <http://eudml.org/doc/299638>.

@article{Pan2024,
abstract = {We investigate derived equivalences between subalgebras of some $\Phi $-Auslander-Yoneda algebras from a class of $n$-angles in weakly $n$-angulated categories. The derived equivalences are obtained by transferring subalgebras induced by $n$-angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to $n$-angle cases. Finally, we give an explicit example to illustrate our result.},
author = {Pan, Shengyong, Yu, Jiahui},
journal = {Czechoslovak Mathematical Journal},
keywords = {approximation; derived equivalence; subring; endomorphism algebra; Auslander-Yoneda algebra},
language = {eng},
number = {4},
pages = {1041-1058},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Transfer of derived equivalences from subalgebras to endomorphism algebras II},
url = {http://eudml.org/doc/299638},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Pan, Shengyong
AU - Yu, Jiahui
TI - Transfer of derived equivalences from subalgebras to endomorphism algebras II
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1041
EP - 1058
AB - We investigate derived equivalences between subalgebras of some $\Phi $-Auslander-Yoneda algebras from a class of $n$-angles in weakly $n$-angulated categories. The derived equivalences are obtained by transferring subalgebras induced by $n$-angles to endomorphism algebras induced by approximation sequences. Then we extend our constructions in T. Brüstle, S. Y. Pan (2016) to $n$-angle cases. Finally, we give an explicit example to illustrate our result.
LA - eng
KW - approximation; derived equivalence; subring; endomorphism algebra; Auslander-Yoneda algebra
UR - http://eudml.org/doc/299638
ER -

References

top
  1. Aihara, T., Iyama, O., 10.1112/jlms/jdr055, J. Lond. Math. Soc., II. Ser. 85 (2012), 633-668. (2012) Zbl1271.18011MR2927802DOI10.1112/jlms/jdr055
  2. Brüstle, T., Pan, S., 10.1142/S0219498816501000, J. Algebra Appl. 15 (2016), Article ID 1650100, 10 pages. (2016) Zbl1345.18010MR3479804DOI10.1142/S0219498816501000
  3. Buan, A. B., Marsh, R. B., Reineke, M., Reiten, I., Todorov, G., 10.1016/j.aim.2005.06.003, Adv. Math. 204 (2006), 572-618. (2006) Zbl1127.16011MR2249625DOI10.1016/j.aim.2005.06.003
  4. Chen, Y., 10.1007/s10468-012-9377-8, Algebr. Represent. Theory 16 (2013), 1661-1684. (2013) Zbl1291.18016MR3127353DOI10.1007/s10468-012-9377-8
  5. Chen, Y., 10.1080/00927872.2013.804925, Commun. Algebra 42 (2014), 4055-4065. (2014) Zbl1312.16004MR3200079DOI10.1080/00927872.2013.804925
  6. Chen, Y., Hu, W., 10.1017/prm.2018.120, Proc. R. Soc. Edinb., Sect. A, Math. 150 (2020), 813-840. (2020) Zbl1442.18033MR4080461DOI10.1017/prm.2018.120
  7. Fedele, F., 10.1016/j.jpaa.2018.11.017, J. Pure App. Algebra 223 (2019), 3354-3580. (2019) Zbl1411.16017MR3926227DOI10.1016/j.jpaa.2018.11.017
  8. Geiss, C., Keller, B., Oppermann, S., 10.1515/CRELLE.2011.177, J. Reine Angew. Math. 675 (2013), 101-120. (2013) Zbl1271.18013MR3021448DOI10.1515/CRELLE.2011.177
  9. Happel, D., Unger, L., Complements and the generalized Nakayama conjecture, Algebras and Modules. II CMS Conference Proceedings 24. AMS, Providence (1998), 293-310. (1998) Zbl0944.16010MR1648633
  10. Hoshino, M., Kato, Y., 10.1016/S0022-4049(02)00176-7, J. Pure Appl. Algebra 177 (2003), 159-175. (2003) Zbl1012.18006MR1954331DOI10.1016/S0022-4049(02)00176-7
  11. Hu, W., Koenig, S., Xi, C., 10.1017/S030821051100045X, Proc. R. Soc. Edinb., Sect. A, Math. 143 (2013), 589-629. (2013) Zbl1336.16014MR3063574DOI10.1017/S030821051100045X
  12. Hu, W., Xi, C., 10.1016/j.aim.2011.01.023, Adv. Math. 227 (2011), 292-318. (2011) Zbl1260.16017MR2782196DOI10.1016/j.aim.2011.01.023
  13. Hu, W., Xi, C., 10.1090/S0002-9947-2013-05688-7, Trans. Am. Math. Soc. 365 (2013), 5681-5711. (2013) Zbl1279.18008MR3091261DOI10.1090/S0002-9947-2013-05688-7
  14. Iyama, O., Oppermann, S., 10.1090/S0002-9947-2011-05312-2, Trans. Am. Math. Soc. 363 (2011), 6575-6614. (2011) Zbl1264.16015MR2833569DOI10.1090/S0002-9947-2011-05312-2
  15. Iyama, O., Yoshino, Y., 10.1007/s00222-007-0096-4, Invent. Math. 172 (2008), 117-168. (2008) Zbl1140.18007MR2385669DOI10.1007/s00222-007-0096-4
  16. Karoubi, M., 10.24033/asens.1163, Ann. Sci. Éc. Norm. Supér. (4) 1 (1968), 161-270 French. (1968) Zbl0194.24101MR0238927DOI10.24033/asens.1163
  17. Neeman, A., 10.1515/9781400837212, Annals of Mathematics Studies 148. Princeton University Press, Princeton (2001). (2001) Zbl0974.18008MR1812507DOI10.1515/9781400837212
  18. Pan, S., 10.7146/math.scand.a-133541, Math. Scand. 128 (2022), 451-506. (2022) Zbl1531.16009MR4529806DOI10.7146/math.scand.a-133541
  19. Rickard, J., 10.1016/0022-4049(89)90081-9, J. Pure Appl. Algebra 61 (1989), 303-317. (1989) Zbl0685.16016MR1027750DOI10.1016/0022-4049(89)90081-9
  20. Rickard, J., 10.1112/jlms/s2-43.1.37, J. Lond. Math. Soc., II. Ser. 43 (1991), 37-48. (1991) Zbl0683.16030MR1099084DOI10.1112/jlms/s2-43.1.37
  21. Rudakov, A. N., 10.1017/CBO9780511721526.001, Helices and Vector Bundles London Mathematical Society Lecture Note Series 148. Cambridge Univerity Press, Cambridge (1990), 1-6. (1990) Zbl0721.14011MR1074777DOI10.1017/CBO9780511721526.001
  22. Xi, C., 10.1016/j.jpaa.2004.03.009, J. Pure Appl. Algebra 193 (2004), 287-305. (2004) Zbl1067.16016MR2076389DOI10.1016/j.jpaa.2004.03.009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.