Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra

Xing Wang; Daowei Lu; Ding-Guo Wang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1059-1082
  • ISSN: 0011-4642

Abstract

top
We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s π -biproduct. Firstly, we discuss the endomorphism monoid End π -Hopf ( A × H , p ) and the automorphism group Aut π -Hopf ( A × H , p ) of Radford’s π -biproduct A × H = { A × H α } α π , and prove that the automorphism has a factorization closely related to the factors A and H = { H α } α π . What’s more interesting is that a pair of maps ( F L , F R ) can be used to describe a family of mappings F = { F α } α π . Secondly, we consider the relationship between the automorphism group Aut π -Hopf ( A × H , p ) and the automorphism group Aut π - 𝒴 𝒟 -Hopf ( A ) of A , and a normal subgroup of the automorphism group Aut π -Hopf ( A × H , p ) . Finally, we specifically describe the automorphism group of an example.

How to cite

top

Wang, Xing, Lu, Daowei, and Wang, Ding-Guo. "Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra." Czechoslovak Mathematical Journal 74.4 (2024): 1059-1082. <http://eudml.org/doc/299652>.

@article{Wang2024,
abstract = {We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s $\pi $-biproduct. Firstly, we discuss the endomorphism monoid $\{\rm End\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$ and the automorphism group $\{\rm Aut\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$ of Radford’s $\pi $-biproduct $A \times H =\lbrace A \times H_\alpha \rbrace _\{\alpha \in \pi \}$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\lbrace H_\alpha \rbrace _\{\alpha \in \pi \}$. What’s more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\lbrace F_\alpha \rbrace _\{\alpha \in \pi \}$. Secondly, we consider the relationship between the automorphism group $\{\rm Aut\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$ and the automorphism group $\{\rm Aut\}_\{\pi \text\{-\}\mathcal \{Y\}\mathcal \{D\}\text\{-Hopf\}\}(A)$ of $A$, and a normal subgroup of the automorphism group $\{\rm Aut\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.},
author = {Wang, Xing, Lu, Daowei, Wang, Ding-Guo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hopf group-coalgebra; Radford’s $\pi $-biproduct; automorphism},
language = {eng},
number = {4},
pages = {1059-1082},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra},
url = {http://eudml.org/doc/299652},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Wang, Xing
AU - Lu, Daowei
AU - Wang, Ding-Guo
TI - Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1059
EP - 1082
AB - We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s $\pi $-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi \text{-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text{-Hopf}}(A\times H, p)$ of Radford’s $\pi $-biproduct $A \times H =\lbrace A \times H_\alpha \rbrace _{\alpha \in \pi }$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\lbrace H_\alpha \rbrace _{\alpha \in \pi }$. What’s more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\lbrace F_\alpha \rbrace _{\alpha \in \pi }$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi \text{-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text{-}\mathcal {Y}\mathcal {D}\text{-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi \text{-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.
LA - eng
KW - Hopf group-coalgebra; Radford’s $\pi $-biproduct; automorphism
UR - http://eudml.org/doc/299652
ER -

References

top
  1. Andruskiewitsch, N., Schneider, H.-J., 10.4007/annals.2010.171.375, Ann. Math. (2) 171 (2010), 375-417. (2010) Zbl1208.16028MR2630042DOI10.4007/annals.2010.171.375
  2. Bulacu, D., Nauwelaerts, E., 10.1016/S0022-4049(02)00014-2, J. Pure Appl. Algebra 174 (2002), 1-42. (2002) Zbl1014.16036MR1924081DOI10.1016/S0022-4049(02)00014-2
  3. Delvaux, L., 10.1007/s10468-007-9053-6, Algebr. Represent. Theory 10 (2007), 533-554. (2007) Zbl1163.16026MR2350225DOI10.1007/s10468-007-9053-6
  4. Guo, S., Wang, S., Crossed products of weak Hopf group coalgebras, Acta Math. Sci., Ser. A, Chin. Ed. 34 (2014), 327-337 Chinese. (2014) Zbl1313.16066MR3186397
  5. Ma, T., Song, Y., 10.4171/rsmup/130-3, Rend. Semin. Mat. Univ. Padova 130 (2013), 127-145. (2013) Zbl1296.16034MR3148634DOI10.4171/rsmup/130-3
  6. Radford, D. E., 10.1016/0021-8693(85)90124-3, J. Algebra 92 (1985), 322-347. (1985) Zbl0549.16003MR0778452DOI10.1016/0021-8693(85)90124-3
  7. Radford, D. E., 10.1080/00927872.2016.1172599, Commun. Algebra 45 (2017), 1365-1398. (2017) Zbl1381.16035MR3576664DOI10.1080/00927872.2016.1172599
  8. Shen, B.-L., Liu, L., 10.1007/s12188-013-0079-x, Abh. Math. Semin. Univ. Hamb. 83 (2013), 129-146. (2013) Zbl1270.16029MR3055826DOI10.1007/s12188-013-0079-x
  9. Shen, B.-L., Wang, S.-H., 10.1080/00927870701509495, Commun. Algebra 36 (2008), 2387-2409. (2008) Zbl1153.16039MR2418392DOI10.1080/00927870701509495
  10. Sweedler, M. E., Hopf Algebras, Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). (1969) Zbl0194.32901MR0252485
  11. Turaev, V., 10.48550/arXiv.math/0005291, Available at https://arxiv.org/abs/math/0005291 (2000), 76 pages. (2000) DOI10.48550/arXiv.math/0005291
  12. Turaev, V., Crossed group-categories, Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. (2008) Zbl1185.18009MR2500054
  13. Daele, A. Van, Wang, S., 10.1080/00927870701509420, Commun. Algebra 36 (2008), 2341-2386. (2008) Zbl1154.16031MR2418391DOI10.1080/00927870701509420
  14. Virelizier, A., 10.1016/S0022-4049(01)00125-6, J. Pure Appl. Algebra 171 (2002), 75-122. (2002) Zbl1011.16023MR1903398DOI10.1016/S0022-4049(01)00125-6
  15. Virelizier, A., 10.1081/AGB-200066110, Commun. Algebra 33 (2005), 3029-3050. (2005) Zbl1084.16034MR2175378DOI10.1081/AGB-200066110
  16. Wang, S.-H., 10.1081/AGB-120039402, Commun. Algebra 32 (2004), 3417-3436. (2004) Zbl1073.16034MR2097469DOI10.1081/AGB-120039402
  17. Wang, S., Jiao, Z., Zhao, W., 10.1080/00927879808826199, Commun. Algebra 26 (1998), 1293-1303. (1998) Zbl0898.16028MR1612240DOI10.1080/00927879808826199
  18. Zunino, M., 10.1016/j.jalgebra.2004.03.019, J. Algebra 278 (2004), 43-75. (2004) Zbl1058.16035MR2068066DOI10.1016/j.jalgebra.2004.03.019
  19. Zunino, M., 10.1016/j.jpaa.2004.02.014, J. Pure Appl. Algebra 193 (2004), 313-343. (2004) Zbl1075.16019MR2076391DOI10.1016/j.jpaa.2004.02.014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.