Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra
Xing Wang; Daowei Lu; Ding-Guo Wang
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 4, page 1059-1082
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWang, Xing, Lu, Daowei, and Wang, Ding-Guo. "Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra." Czechoslovak Mathematical Journal 74.4 (2024): 1059-1082. <http://eudml.org/doc/299652>.
@article{Wang2024,
abstract = {We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s $\pi $-biproduct. Firstly, we discuss the endomorphism monoid $\{\rm End\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$ and the automorphism group $\{\rm Aut\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$ of Radford’s $\pi $-biproduct $A \times H =\lbrace A \times H_\alpha \rbrace _\{\alpha \in \pi \}$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\lbrace H_\alpha \rbrace _\{\alpha \in \pi \}$. What’s more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\lbrace F_\alpha \rbrace _\{\alpha \in \pi \}$. Secondly, we consider the relationship between the automorphism group $\{\rm Aut\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$ and the automorphism group $\{\rm Aut\}_\{\pi \text\{-\}\mathcal \{Y\}\mathcal \{D\}\text\{-Hopf\}\}(A)$ of $A$, and a normal subgroup of the automorphism group $\{\rm Aut\}_\{\pi \text\{-Hopf\}\}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.},
author = {Wang, Xing, Lu, Daowei, Wang, Ding-Guo},
journal = {Czechoslovak Mathematical Journal},
keywords = {Hopf group-coalgebra; Radford’s $\pi $-biproduct; automorphism},
language = {eng},
number = {4},
pages = {1059-1082},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra},
url = {http://eudml.org/doc/299652},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Wang, Xing
AU - Lu, Daowei
AU - Wang, Ding-Guo
TI - Characterization of automorphisms of Radford's biproduct of Hopf group-coalgebra
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1059
EP - 1082
AB - We study certain subgroups of the Hopf group-coalgebra automorphism group of Radford’s $\pi $-biproduct. Firstly, we discuss the endomorphism monoid ${\rm End}_{\pi \text{-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text{-Hopf}}(A\times H, p)$ of Radford’s $\pi $-biproduct $A \times H =\lbrace A \times H_\alpha \rbrace _{\alpha \in \pi }$, and prove that the automorphism has a factorization closely related to the factors $A$ and $H=\lbrace H_\alpha \rbrace _{\alpha \in \pi }$. What’s more interesting is that a pair of maps $(F_L,F_R)$ can be used to describe a family of mappings $F=\lbrace F_\alpha \rbrace _{\alpha \in \pi }$. Secondly, we consider the relationship between the automorphism group ${\rm Aut}_{\pi \text{-Hopf}}(A\times H, p)$ and the automorphism group ${\rm Aut}_{\pi \text{-}\mathcal {Y}\mathcal {D}\text{-Hopf}}(A)$ of $A$, and a normal subgroup of the automorphism group ${\rm Aut}_{\pi \text{-Hopf}}(A\times H, p)$. Finally, we specifically describe the automorphism group of an example.
LA - eng
KW - Hopf group-coalgebra; Radford’s $\pi $-biproduct; automorphism
UR - http://eudml.org/doc/299652
ER -
References
top- Andruskiewitsch, N., Schneider, H.-J., 10.4007/annals.2010.171.375, Ann. Math. (2) 171 (2010), 375-417. (2010) Zbl1208.16028MR2630042DOI10.4007/annals.2010.171.375
- Bulacu, D., Nauwelaerts, E., 10.1016/S0022-4049(02)00014-2, J. Pure Appl. Algebra 174 (2002), 1-42. (2002) Zbl1014.16036MR1924081DOI10.1016/S0022-4049(02)00014-2
- Delvaux, L., 10.1007/s10468-007-9053-6, Algebr. Represent. Theory 10 (2007), 533-554. (2007) Zbl1163.16026MR2350225DOI10.1007/s10468-007-9053-6
- Guo, S., Wang, S., Crossed products of weak Hopf group coalgebras, Acta Math. Sci., Ser. A, Chin. Ed. 34 (2014), 327-337 Chinese. (2014) Zbl1313.16066MR3186397
- Ma, T., Song, Y., 10.4171/rsmup/130-3, Rend. Semin. Mat. Univ. Padova 130 (2013), 127-145. (2013) Zbl1296.16034MR3148634DOI10.4171/rsmup/130-3
- Radford, D. E., 10.1016/0021-8693(85)90124-3, J. Algebra 92 (1985), 322-347. (1985) Zbl0549.16003MR0778452DOI10.1016/0021-8693(85)90124-3
- Radford, D. E., 10.1080/00927872.2016.1172599, Commun. Algebra 45 (2017), 1365-1398. (2017) Zbl1381.16035MR3576664DOI10.1080/00927872.2016.1172599
- Shen, B.-L., Liu, L., 10.1007/s12188-013-0079-x, Abh. Math. Semin. Univ. Hamb. 83 (2013), 129-146. (2013) Zbl1270.16029MR3055826DOI10.1007/s12188-013-0079-x
- Shen, B.-L., Wang, S.-H., 10.1080/00927870701509495, Commun. Algebra 36 (2008), 2387-2409. (2008) Zbl1153.16039MR2418392DOI10.1080/00927870701509495
- Sweedler, M. E., Hopf Algebras, Mathematics Lecture Note Series. W. A. Benjamin, New York (1969). (1969) Zbl0194.32901MR0252485
- Turaev, V., 10.48550/arXiv.math/0005291, Available at https://arxiv.org/abs/math/0005291 (2000), 76 pages. (2000) DOI10.48550/arXiv.math/0005291
- Turaev, V., Crossed group-categories, Arab. J. Sci. Eng., Sect. C, Theme Issues 33 (2008), 483-503. (2008) Zbl1185.18009MR2500054
- Daele, A. Van, Wang, S., 10.1080/00927870701509420, Commun. Algebra 36 (2008), 2341-2386. (2008) Zbl1154.16031MR2418391DOI10.1080/00927870701509420
- Virelizier, A., 10.1016/S0022-4049(01)00125-6, J. Pure Appl. Algebra 171 (2002), 75-122. (2002) Zbl1011.16023MR1903398DOI10.1016/S0022-4049(01)00125-6
- Virelizier, A., 10.1081/AGB-200066110, Commun. Algebra 33 (2005), 3029-3050. (2005) Zbl1084.16034MR2175378DOI10.1081/AGB-200066110
- Wang, S.-H., 10.1081/AGB-120039402, Commun. Algebra 32 (2004), 3417-3436. (2004) Zbl1073.16034MR2097469DOI10.1081/AGB-120039402
- Wang, S., Jiao, Z., Zhao, W., 10.1080/00927879808826199, Commun. Algebra 26 (1998), 1293-1303. (1998) Zbl0898.16028MR1612240DOI10.1080/00927879808826199
- Zunino, M., 10.1016/j.jalgebra.2004.03.019, J. Algebra 278 (2004), 43-75. (2004) Zbl1058.16035MR2068066DOI10.1016/j.jalgebra.2004.03.019
- Zunino, M., 10.1016/j.jpaa.2004.02.014, J. Pure Appl. Algebra 193 (2004), 313-343. (2004) Zbl1075.16019MR2076391DOI10.1016/j.jpaa.2004.02.014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.