Stević-Sharma type operators on Fock spaces in several variables

Lijun Ma; Zicong Yang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1241-1263
  • ISSN: 0011-4642

Abstract

top
Let ϕ be an entire self-map of N , u 0 be an entire function on N and 𝐮 = ( u 1 , , u N ) be a vector-valued entire function on N . We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator T u 0 , 𝐮 , ϕ as follows: - . 4 p t T u 0 , 𝐮 , ϕ f = u 0 · f ϕ + i = 1 N u i · f z i ϕ . We investigate the boundedness and compactness of T u 0 , 𝐮 , ϕ on Fock spaces. The complex symmetry and self-adjointness of T u 0 , 𝐮 , ϕ are also characterized.

How to cite

top

Ma, Lijun, and Yang, Zicong. "Stević-Sharma type operators on Fock spaces in several variables." Czechoslovak Mathematical Journal 74.4 (2024): 1241-1263. <http://eudml.org/doc/299656>.

@article{Ma2024,
abstract = {Let $\varphi $ be an entire self-map of $\mathbb \{C\}^N$, $u_0$ be an entire function on $\mathbb \{C\}^N$ and $\{\bf u\}=(u_1,\cdots ,u_N)$ be a vector-valued entire function on $\mathbb \{C\}^N$. We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator $T_\{u_0,\{\bf u\},\varphi \}$ as follows: \[-.4pt T\_\{u\_0,\{\bf u\},\varphi \}f=u\_0\cdot f\circ \varphi +\sum \_\{i=1\}^Nu\_i\cdot \frac\{\partial f\}\{\partial z\_i\}\circ \varphi . \] We investigate the boundedness and compactness of $T_\{u_0,\{\bf u\},\varphi \}$ on Fock spaces. The complex symmetry and self-adjointness of $T_\{u_0,\{\bf u\},\varphi \}$ are also characterized.},
author = {Ma, Lijun, Yang, Zicong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stević-Sharma operator; Fock space; $\mathcal \{J\}$-symmetry},
language = {eng},
number = {4},
pages = {1241-1263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stević-Sharma type operators on Fock spaces in several variables},
url = {http://eudml.org/doc/299656},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Ma, Lijun
AU - Yang, Zicong
TI - Stević-Sharma type operators on Fock spaces in several variables
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1241
EP - 1263
AB - Let $\varphi $ be an entire self-map of $\mathbb {C}^N$, $u_0$ be an entire function on $\mathbb {C}^N$ and ${\bf u}=(u_1,\cdots ,u_N)$ be a vector-valued entire function on $\mathbb {C}^N$. We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator $T_{u_0,{\bf u},\varphi }$ as follows: \[-.4pt T_{u_0,{\bf u},\varphi }f=u_0\cdot f\circ \varphi +\sum _{i=1}^Nu_i\cdot \frac{\partial f}{\partial z_i}\circ \varphi . \] We investigate the boundedness and compactness of $T_{u_0,{\bf u},\varphi }$ on Fock spaces. The complex symmetry and self-adjointness of $T_{u_0,{\bf u},\varphi }$ are also characterized.
LA - eng
KW - Stević-Sharma operator; Fock space; $\mathcal {J}$-symmetry
UR - http://eudml.org/doc/299656
ER -

References

top
  1. Arroussi, H., Tong, C., 10.1016/j.jfa.2019.04.008, J. Funct. Anal. 277 (2019), 3436-3466. (2019) Zbl1429.32011MR4001076DOI10.1016/j.jfa.2019.04.008
  2. Carswell, B., MacCluer, B., Schuster, A., Composition operators on the Fock space, Acta Sci. Math. 69 (2003), 871-887. (2003) Zbl1051.47023MR2034214
  3. Chen, R.-Y., Yang, Z.-C., Zhou, Z.-H., 10.7153/oam-2022-16-74, Oper. Matrices 16 (2022), 1139-1154. (2022) Zbl1515.30124MR4543382DOI10.7153/oam-2022-16-74
  4. Cowen, C. C., MacCluer, B. D., 10.1201/9781315139920, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026DOI10.1201/9781315139920
  5. Garcia, S. R., Putinar, M., 10.1090/S0002-9947-05-03742-6, Trans. Am. Math. Soc. 358 (2006), 1285-1315. (2006) Zbl1087.30031MR2187654DOI10.1090/S0002-9947-05-03742-6
  6. Hai, P. V., Khoi, L. H., 10.1016/j.jmaa.2015.08.069, J. Math. Anal. Appl. 433 (2016), 1757-1771. (2016) Zbl1325.47057MR3398790DOI10.1016/j.jmaa.2015.08.069
  7. Hai, P. V., Khoi, L. H., 10.1080/17476933.2017.1315108, Complex Var. Elliptic Equ. 63 (2018), 391-405. (2018) Zbl1390.32001MR3764769DOI10.1080/17476933.2017.1315108
  8. Han, K., Wang, M., 10.1007/s11425-020-1752-0, Sci. China, Math. 65 (2022), 111-126. (2022) Zbl07462121MR4361970DOI10.1007/s11425-020-1752-0
  9. Horn, R. A., Johnson, C. R., 10.1017/CBO9780511810817, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290DOI10.1017/CBO9780511810817
  10. Hu, J., Li, S., Ou, D., Embedding derivatives of Fock spaces and generalized weighted composition operators, J. Nonlinear Var. Anal. 5 (2021), 589-613. (2021) Zbl1519.47041
  11. Hu, X., Yang, Z., Zhou, Z., 10.1142/S0129167X20500068, Int. J. Math. 31 (2020), Article ID 2050006, 21 pages. (2020) Zbl1513.47048MR4060570DOI10.1142/S0129167X20500068
  12. Hu, Z., 10.1090/S0002-9939-2013-11550-9, Proc. Am. Math. Soc. 141 (2013), 2829-2840. (2013) Zbl1272.32003MR3056573DOI10.1090/S0002-9939-2013-11550-9
  13. Hu, Z., Lv, X., 10.1007/s00020-011-1887-y, Integral Equations Oper. Theory 70 (2011), 541-559. (2011) Zbl1262.47044MR2819157DOI10.1007/s00020-011-1887-y
  14. Janson, S., Peetre, J., Rochberg, R., 10.4171/RMI/46, Rev. Math. Iberoam. 3 (1987), 61-138. (1987) Zbl0704.47022MR1008445DOI10.4171/RMI/46
  15. Le, T., 10.1112/blms/bdu046, Bull. Lond. Math. Soc. 46 (2014), 847-856. (2014) Zbl1298.47049MR3239622DOI10.1112/blms/bdu046
  16. Liu, Y., Yu, Y., 10.1016/j.jmaa.2014.09.069, J. Math. Anal. Appl. 423 (2015), 76-93. (2015) Zbl1304.47046MR3273168DOI10.1016/j.jmaa.2014.09.069
  17. Malhotra, A., Gupta, A., 10.1016/j.jmaa.2020.124740, J. Math. Anal. Appl. 495 (2021), Article ID 124740, 12 pages. (2021) Zbl1461.30126MR4182951DOI10.1016/j.jmaa.2020.124740
  18. Shapiro, J. H., 10.1007/978-1-4612-0887-7, Universitext: Tracts in Mathematics. Springer, New York (1993). (1993) Zbl0791.30033MR1237406DOI10.1007/978-1-4612-0887-7
  19. Sharma, A. K., 10.3906/mat-0806-24, Turk. J. Math. 35 (2011), 275-291. (2011) Zbl1236.47025MR2839722DOI10.3906/mat-0806-24
  20. Stević, S., 10.1016/j.amc.2009.09.016, Appl. Math. Comput. 215 (2009), 2750-2760. (2009) Zbl1186.32003MR2563487DOI10.1016/j.amc.2009.09.016
  21. Stević, S., 10.1016/j.amc.2009.01.061, Appl. Math. Comput. 211 (2009), 222-233. (2009) Zbl1165.30029MR2517681DOI10.1016/j.amc.2009.01.061
  22. Stević, S., 10.1155/2010/801264, Abstr. Appl. Anal. 2010 (2020), Article ID 801264, 14 pages. (2020) Zbl1207.47022MR2739686DOI10.1155/2010/801264
  23. Stević, S., 10.7153/jmi-2022-16-109, J. Math. Inequal. 16 (2022), 1675-1692. (2022) Zbl1521.47070MR4532711DOI10.7153/jmi-2022-16-109
  24. Stević, S., 10.1002/mma.9681, Math. Methods Appl. Sci. 47 (2024), 3893-3902. (2024) Zbl07861229MR4730471DOI10.1002/mma.9681
  25. Stević, S., Huang, C.-S., Jiang, Z.-J., 10.1002/mma.8467, Math. Methods Appl. Sci. 45 (2022), 11581-11600. (2022) Zbl07812790MR4509893DOI10.1002/mma.8467
  26. Stević, S., Sharma, A. K., 10.1186/s13660-018-1867-8, J. Inequal. Appl. 2018 (2018), Article ID 273, 18 pages. (2018) Zbl1506.47057MR3863081DOI10.1186/s13660-018-1867-8
  27. Stević, S., Sharma, A. K., Bhat, A., 10.1016/j.amc.2011.06.055, Appl. Math. Comput. 218 (2011), 2386-2397. (2011) Zbl1244.30080MR2838149DOI10.1016/j.amc.2011.06.055
  28. Stević, S., Sharma, A. K., Bhat, A., 10.1016/j.amc.2011.03.014, Appl. Math. Comput. 217 (2011), 8115-8125. (2011) Zbl1218.30152MR2802222DOI10.1016/j.amc.2011.03.014
  29. Stević, S., Sharma, A. K., Krisham, R., 10.1186/s13660-016-1159-0, J. Inequal. Appl. 2016 (2016), Article ID 219, 32 pages. (2016) Zbl1353.47065MR3546586DOI10.1186/s13660-016-1159-0
  30. Tien, P. T., Khoi, L. H., 10.1007/s00605-018-1179-6, Monatsh. Math. 188 (2019), 183-193. (2019) Zbl1508.47051MR3895397DOI10.1007/s00605-018-1179-6
  31. Tien, P. T., Khoi, L. H., 10.1007/s11118-017-9678-y, Potential Anal. 50 (2019), 171-195. (2019) Zbl1411.30040MR3905527DOI10.1007/s11118-017-9678-y
  32. Tien, P. T., Khoi, L. H., 10.1002/mana.201800197, Math. Nachr. 293 (2020), 1200-1220. (2020) Zbl07261550MR4107990DOI10.1002/mana.201800197
  33. Ueki, S.-I., Hilbert-Schmidt weighted composition operator on the Fock space, Int. J. Math. Anal., Ruse 1 (2007), 769-774. (2007) Zbl1160.47306MR2370212
  34. Ueki, S.-I., 10.1090/S0002-9939-06-08605-9, Proc. Am. Math. Soc. 135 (2007), 1405-1410. (2007) Zbl1126.47026MR2276649DOI10.1090/S0002-9939-06-08605-9
  35. Ueki, S.-I., 10.36045/bbms/1274896210, Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 343-353. (2010) Zbl1191.47032MR2663477DOI10.36045/bbms/1274896210
  36. Wallstén, R., 10.7146/math.scand.a-12251, Math. Scand. 64 (1989), 123-132. (1989) Zbl0722.47025MR1036432DOI10.7146/math.scand.a-12251
  37. Wang, S., Wang, M., Guo, X., 10.1007/s43037-019-00051-z, Banach J. Math. Anal. 14 (2020), 1019-1054. (2020) Zbl1508.47088MR4123322DOI10.1007/s43037-019-00051-z
  38. Wang, S., Wang, M., Guo, X., 10.1080/17476933.2019.1687455, Complex Var. Elliptic Equ. 65 (2020), 2026-2055. (2020) Zbl1523.47041MR4170195DOI10.1080/17476933.2019.1687455
  39. Zhao, L., 10.1155/2015/250358, J. Funct. Spaces 2015 (2015), Article ID 250358, 5 pages. (2015) Zbl1321.47065MR3361112DOI10.1155/2015/250358
  40. Zhu, K., 10.1007/978-1-4419-8801-0, Graduate Texts in Mathematics 263. Springer, New York (2012). (2012) Zbl1262.30003MR2934601DOI10.1007/978-1-4419-8801-0
  41. Zhu, X., 10.1080/01630560903123163, Numer. Funct. Anal. Optim. 30 (2009), 881-893. (2009) Zbl1183.47030MR2555666DOI10.1080/01630560903123163

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.