Stević-Sharma type operators on Fock spaces in several variables

Lijun Ma; Zicong Yang

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 4, page 1241-1263
  • ISSN: 0011-4642

Abstract

top
Let ϕ be an entire self-map of N , u 0 be an entire function on N and 𝐮 = ( u 1 , , u N ) be a vector-valued entire function on N . We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator T u 0 , 𝐮 , ϕ as follows: - . 4 p t T u 0 , 𝐮 , ϕ f = u 0 · f ϕ + i = 1 N u i · f z i ϕ . We investigate the boundedness and compactness of T u 0 , 𝐮 , ϕ on Fock spaces. The complex symmetry and self-adjointness of T u 0 , 𝐮 , ϕ are also characterized.

How to cite

top

Ma, Lijun, and Yang, Zicong. "Stević-Sharma type operators on Fock spaces in several variables." Czechoslovak Mathematical Journal 74.4 (2024): 1241-1263. <http://eudml.org/doc/299656>.

@article{Ma2024,
abstract = {Let $\varphi $ be an entire self-map of $\mathbb \{C\}^N$, $u_0$ be an entire function on $\mathbb \{C\}^N$ and $\{\bf u\}=(u_1,\cdots ,u_N)$ be a vector-valued entire function on $\mathbb \{C\}^N$. We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator $T_\{u_0,\{\bf u\},\varphi \}$ as follows: \[-.4pt T\_\{u\_0,\{\bf u\},\varphi \}f=u\_0\cdot f\circ \varphi +\sum \_\{i=1\}^Nu\_i\cdot \frac\{\partial f\}\{\partial z\_i\}\circ \varphi . \] We investigate the boundedness and compactness of $T_\{u_0,\{\bf u\},\varphi \}$ on Fock spaces. The complex symmetry and self-adjointness of $T_\{u_0,\{\bf u\},\varphi \}$ are also characterized.},
author = {Ma, Lijun, Yang, Zicong},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stević-Sharma operator; Fock space; $\mathcal \{J\}$-symmetry},
language = {eng},
number = {4},
pages = {1241-1263},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stević-Sharma type operators on Fock spaces in several variables},
url = {http://eudml.org/doc/299656},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Ma, Lijun
AU - Yang, Zicong
TI - Stević-Sharma type operators on Fock spaces in several variables
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 4
SP - 1241
EP - 1263
AB - Let $\varphi $ be an entire self-map of $\mathbb {C}^N$, $u_0$ be an entire function on $\mathbb {C}^N$ and ${\bf u}=(u_1,\cdots ,u_N)$ be a vector-valued entire function on $\mathbb {C}^N$. We extend the Stević-Sharma type operator to the classcial Fock spaces, by defining an operator $T_{u_0,{\bf u},\varphi }$ as follows: \[-.4pt T_{u_0,{\bf u},\varphi }f=u_0\cdot f\circ \varphi +\sum _{i=1}^Nu_i\cdot \frac{\partial f}{\partial z_i}\circ \varphi . \] We investigate the boundedness and compactness of $T_{u_0,{\bf u},\varphi }$ on Fock spaces. The complex symmetry and self-adjointness of $T_{u_0,{\bf u},\varphi }$ are also characterized.
LA - eng
KW - Stević-Sharma operator; Fock space; $\mathcal {J}$-symmetry
UR - http://eudml.org/doc/299656
ER -

References

top
  1. Arroussi, H., Tong, C., 10.1016/j.jfa.2019.04.008, J. Funct. Anal. 277 (2019), 3436-3466. (2019) Zbl1429.32011MR4001076DOI10.1016/j.jfa.2019.04.008
  2. Carswell, B., MacCluer, B., Schuster, A., Composition operators on the Fock space, Acta Sci. Math. 69 (2003), 871-887. (2003) Zbl1051.47023MR2034214
  3. Chen, R.-Y., Yang, Z.-C., Zhou, Z.-H., 10.7153/oam-2022-16-74, Oper. Matrices 16 (2022), 1139-1154. (2022) Zbl1515.30124MR4543382DOI10.7153/oam-2022-16-74
  4. Cowen, C. C., MacCluer, B. D., 10.1201/9781315139920, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026DOI10.1201/9781315139920
  5. Garcia, S. R., Putinar, M., 10.1090/S0002-9947-05-03742-6, Trans. Am. Math. Soc. 358 (2006), 1285-1315. (2006) Zbl1087.30031MR2187654DOI10.1090/S0002-9947-05-03742-6
  6. Hai, P. V., Khoi, L. H., 10.1016/j.jmaa.2015.08.069, J. Math. Anal. Appl. 433 (2016), 1757-1771. (2016) Zbl1325.47057MR3398790DOI10.1016/j.jmaa.2015.08.069
  7. Hai, P. V., Khoi, L. H., 10.1080/17476933.2017.1315108, Complex Var. Elliptic Equ. 63 (2018), 391-405. (2018) Zbl1390.32001MR3764769DOI10.1080/17476933.2017.1315108
  8. Han, K., Wang, M., 10.1007/s11425-020-1752-0, Sci. China, Math. 65 (2022), 111-126. (2022) Zbl07462121MR4361970DOI10.1007/s11425-020-1752-0
  9. Horn, R. A., Johnson, C. R., 10.1017/CBO9780511810817, Cambridge University Press, Cambridge (2013). (2013) Zbl1267.15001MR2978290DOI10.1017/CBO9780511810817
  10. Hu, J., Li, S., Ou, D., Embedding derivatives of Fock spaces and generalized weighted composition operators, J. Nonlinear Var. Anal. 5 (2021), 589-613. (2021) Zbl1519.47041
  11. Hu, X., Yang, Z., Zhou, Z., 10.1142/S0129167X20500068, Int. J. Math. 31 (2020), Article ID 2050006, 21 pages. (2020) Zbl1513.47048MR4060570DOI10.1142/S0129167X20500068
  12. Hu, Z., 10.1090/S0002-9939-2013-11550-9, Proc. Am. Math. Soc. 141 (2013), 2829-2840. (2013) Zbl1272.32003MR3056573DOI10.1090/S0002-9939-2013-11550-9
  13. Hu, Z., Lv, X., 10.1007/s00020-011-1887-y, Integral Equations Oper. Theory 70 (2011), 541-559. (2011) Zbl1262.47044MR2819157DOI10.1007/s00020-011-1887-y
  14. Janson, S., Peetre, J., Rochberg, R., 10.4171/RMI/46, Rev. Math. Iberoam. 3 (1987), 61-138. (1987) Zbl0704.47022MR1008445DOI10.4171/RMI/46
  15. Le, T., 10.1112/blms/bdu046, Bull. Lond. Math. Soc. 46 (2014), 847-856. (2014) Zbl1298.47049MR3239622DOI10.1112/blms/bdu046
  16. Liu, Y., Yu, Y., 10.1016/j.jmaa.2014.09.069, J. Math. Anal. Appl. 423 (2015), 76-93. (2015) Zbl1304.47046MR3273168DOI10.1016/j.jmaa.2014.09.069
  17. Malhotra, A., Gupta, A., 10.1016/j.jmaa.2020.124740, J. Math. Anal. Appl. 495 (2021), Article ID 124740, 12 pages. (2021) Zbl1461.30126MR4182951DOI10.1016/j.jmaa.2020.124740
  18. Shapiro, J. H., 10.1007/978-1-4612-0887-7, Universitext: Tracts in Mathematics. Springer, New York (1993). (1993) Zbl0791.30033MR1237406DOI10.1007/978-1-4612-0887-7
  19. Sharma, A. K., 10.3906/mat-0806-24, Turk. J. Math. 35 (2011), 275-291. (2011) Zbl1236.47025MR2839722DOI10.3906/mat-0806-24
  20. Stević, S., 10.1016/j.amc.2009.09.016, Appl. Math. Comput. 215 (2009), 2750-2760. (2009) Zbl1186.32003MR2563487DOI10.1016/j.amc.2009.09.016
  21. Stević, S., 10.1016/j.amc.2009.01.061, Appl. Math. Comput. 211 (2009), 222-233. (2009) Zbl1165.30029MR2517681DOI10.1016/j.amc.2009.01.061
  22. Stević, S., 10.1155/2010/801264, Abstr. Appl. Anal. 2010 (2020), Article ID 801264, 14 pages. (2020) Zbl1207.47022MR2739686DOI10.1155/2010/801264
  23. Stević, S., 10.7153/jmi-2022-16-109, J. Math. Inequal. 16 (2022), 1675-1692. (2022) Zbl1521.47070MR4532711DOI10.7153/jmi-2022-16-109
  24. Stević, S., 10.1002/mma.9681, Math. Methods Appl. Sci. 47 (2024), 3893-3902. (2024) Zbl07861229MR4730471DOI10.1002/mma.9681
  25. Stević, S., Huang, C.-S., Jiang, Z.-J., 10.1002/mma.8467, Math. Methods Appl. Sci. 45 (2022), 11581-11600. (2022) Zbl07812790MR4509893DOI10.1002/mma.8467
  26. Stević, S., Sharma, A. K., 10.1186/s13660-018-1867-8, J. Inequal. Appl. 2018 (2018), Article ID 273, 18 pages. (2018) Zbl1506.47057MR3863081DOI10.1186/s13660-018-1867-8
  27. Stević, S., Sharma, A. K., Bhat, A., 10.1016/j.amc.2011.06.055, Appl. Math. Comput. 218 (2011), 2386-2397. (2011) Zbl1244.30080MR2838149DOI10.1016/j.amc.2011.06.055
  28. Stević, S., Sharma, A. K., Bhat, A., 10.1016/j.amc.2011.03.014, Appl. Math. Comput. 217 (2011), 8115-8125. (2011) Zbl1218.30152MR2802222DOI10.1016/j.amc.2011.03.014
  29. Stević, S., Sharma, A. K., Krisham, R., 10.1186/s13660-016-1159-0, J. Inequal. Appl. 2016 (2016), Article ID 219, 32 pages. (2016) Zbl1353.47065MR3546586DOI10.1186/s13660-016-1159-0
  30. Tien, P. T., Khoi, L. H., 10.1007/s00605-018-1179-6, Monatsh. Math. 188 (2019), 183-193. (2019) Zbl1508.47051MR3895397DOI10.1007/s00605-018-1179-6
  31. Tien, P. T., Khoi, L. H., 10.1007/s11118-017-9678-y, Potential Anal. 50 (2019), 171-195. (2019) Zbl1411.30040MR3905527DOI10.1007/s11118-017-9678-y
  32. Tien, P. T., Khoi, L. H., 10.1002/mana.201800197, Math. Nachr. 293 (2020), 1200-1220. (2020) Zbl07261550MR4107990DOI10.1002/mana.201800197
  33. Ueki, S.-I., Hilbert-Schmidt weighted composition operator on the Fock space, Int. J. Math. Anal., Ruse 1 (2007), 769-774. (2007) Zbl1160.47306MR2370212
  34. Ueki, S.-I., 10.1090/S0002-9939-06-08605-9, Proc. Am. Math. Soc. 135 (2007), 1405-1410. (2007) Zbl1126.47026MR2276649DOI10.1090/S0002-9939-06-08605-9
  35. Ueki, S.-I., 10.36045/bbms/1274896210, Bull. Belg. Math. Soc. - Simon Stevin 17 (2010), 343-353. (2010) Zbl1191.47032MR2663477DOI10.36045/bbms/1274896210
  36. Wallstén, R., 10.7146/math.scand.a-12251, Math. Scand. 64 (1989), 123-132. (1989) Zbl0722.47025MR1036432DOI10.7146/math.scand.a-12251
  37. Wang, S., Wang, M., Guo, X., 10.1007/s43037-019-00051-z, Banach J. Math. Anal. 14 (2020), 1019-1054. (2020) Zbl1508.47088MR4123322DOI10.1007/s43037-019-00051-z
  38. Wang, S., Wang, M., Guo, X., 10.1080/17476933.2019.1687455, Complex Var. Elliptic Equ. 65 (2020), 2026-2055. (2020) Zbl1523.47041MR4170195DOI10.1080/17476933.2019.1687455
  39. Zhao, L., 10.1155/2015/250358, J. Funct. Spaces 2015 (2015), Article ID 250358, 5 pages. (2015) Zbl1321.47065MR3361112DOI10.1155/2015/250358
  40. Zhu, K., 10.1007/978-1-4419-8801-0, Graduate Texts in Mathematics 263. Springer, New York (2012). (2012) Zbl1262.30003MR2934601DOI10.1007/978-1-4419-8801-0
  41. Zhu, X., 10.1080/01630560903123163, Numer. Funct. Anal. Optim. 30 (2009), 881-893. (2009) Zbl1183.47030MR2555666DOI10.1080/01630560903123163

NotesEmbed ?

top

You must be logged in to post comments.