Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series

Elumalai Krishnan Nithiyanandham; Bhaskara Srutha Keerthi

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 4, page 455-470
  • ISSN: 0862-7959

Abstract

top
Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class 𝔭 - Φ 𝒮 * ( t , μ , ν , J , K ) is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.

How to cite

top

Nithiyanandham, Elumalai Krishnan, and Keerthi, Bhaskara Srutha. "Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series." Mathematica Bohemica 149.4 (2024): 455-470. <http://eudml.org/doc/299657>.

@article{Nithiyanandham2024,
abstract = {Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class $ \mathfrak \{p\}\text\{-\}\Phi \mathcal \{S\}^*(t,\mu ,\nu ,J,K) $ is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.},
author = {Nithiyanandham, Elumalai Krishnan, Keerthi, Bhaskara Srutha},
journal = {Mathematica Bohemica},
keywords = {Mittag-Leffler type Poisson distribution; analytic function; conic-type region; geometric properties},
language = {eng},
number = {4},
pages = {455-470},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series},
url = {http://eudml.org/doc/299657},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Nithiyanandham, Elumalai Krishnan
AU - Keerthi, Bhaskara Srutha
TI - Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 455
EP - 470
AB - Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class $ \mathfrak {p}\text{-}\Phi \mathcal {S}^*(t,\mu ,\nu ,J,K) $ is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.
LA - eng
KW - Mittag-Leffler type Poisson distribution; analytic function; conic-type region; geometric properties
UR - http://eudml.org/doc/299657
ER -

References

top
  1. Agarwal, R. P., A propos d'une note de M. Pierre Humbert, C. R. Acad. Sci., Paris 236 (1953), 2031-2032 French. (1953) Zbl0051.30801MR0055502
  2. Alessa, N., Venkateswarlu, B., Reddy, P. T., Loganathan, K., Tamilvanan, K., 10.1155/2021/6618163, J. Funct. Spaces 2021 (2021), Article ID 6618163, 7 pages. (2021) Zbl1461.30036MR4214806DOI10.1155/2021/6618163
  3. Kanas, S., Răducanu, D., 10.2478/s12175-014-0268-9, Math. Slovaca 64 (2014), 1183-1196. (2014) Zbl1349.30054MR3277846DOI10.2478/s12175-014-0268-9
  4. Kanas, S., Srivastava, H. M., 10.1080/10652460008819249, Integral Transforms Spec. Funct. 9 (2000), 121-132. (2000) Zbl0959.30007MR1784495DOI10.1080/10652460008819249
  5. Kanas, S., Wiśniowska, A., 10.1016/S0377-0427(99)00018-7, J. Comput. Appl. Math. 105 (1999), 327-336. (1999) Zbl0944.30008MR1690599DOI10.1016/S0377-0427(99)00018-7
  6. Kanas, S., Wiśniowska, A., Conic domains and starlike functions, Rev. Roum. Math. Pures Appl. 45 (2000), 647-657. (2000) Zbl0990.30010MR1836295
  7. Khan, M. G., Ahmad, B., Khan, N., Mashwani, W. K., Arjika, S., Khan, B., Chinram, R., 10.1155/2021/4343163, J. Funct. Spaces 2021 (2021), Article ID 4343163, 9 pages. (2021) Zbl1508.30027MR4296642DOI10.1155/2021/4343163
  8. Mahmood, T., Naeem, M., Hussain, S., Khan, S., Altinkaya, Ş., 10.5831/HMJ.2020.42.3.577, Honam Math. J. 42 (2020), 577-590. (2020) Zbl1467.30010MR4161224DOI10.5831/HMJ.2020.42.3.577
  9. Mittag-Leffler, G. M., Une généralisation de l'intégrale de Laplace-Abel, C. R. Acad. Sci., Paris 136 (1903), 537-539 French 9999JFM99999 34.0434.02. (1903) 
  10. Mittag-Leffler, G. M., Sur la nouvelle fonction E α ( x ) , C. R. Acad. Sci., Paris 137 (1904), 554-558 French 9999JFM99999 34.0435.01. (1904) 
  11. Mittag-Leffler, G., 10.1007/BF02403200, Acta Math. 29 (1905), 101-181 French 9999JFM99999 36.0469.02. (1905) MR1555012DOI10.1007/BF02403200
  12. Noor, K. I., Malik, S. N., 10.1016/j.camwa.2011.07.006, Comput. Math. Appl. 62 (2011), 2209-2217. (2011) Zbl1231.30011MR2831681DOI10.1016/j.camwa.2011.07.006
  13. Porwal, S., Dixit, K. K., 10.1007/s13370-016-0427-y, Afr. Mat. 28 (2017), 29-34. (2017) Zbl1373.60033MR3613617DOI10.1007/s13370-016-0427-y
  14. Wiman, A., 10.1007/BF02403202, Acta Math. 29 (1905), 191-201 German 9999JFM99999 36.0471.01. (1905) MR1555014DOI10.1007/BF02403202
  15. Wiman, A., 10.1007/BF02403204, Acta Math. 29 (1905), 217-234 German 9999JFM99999 36.0472.01. (1905) MR1555016DOI10.1007/BF02403204

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.