Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series
Elumalai Krishnan Nithiyanandham; Bhaskara Srutha Keerthi
Mathematica Bohemica (2024)
- Volume: 149, Issue: 4, page 455-470
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNithiyanandham, Elumalai Krishnan, and Keerthi, Bhaskara Srutha. "Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series." Mathematica Bohemica 149.4 (2024): 455-470. <http://eudml.org/doc/299657>.
@article{Nithiyanandham2024,
abstract = {Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class $ \mathfrak \{p\}\text\{-\}\Phi \mathcal \{S\}^*(t,\mu ,\nu ,J,K) $ is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.},
author = {Nithiyanandham, Elumalai Krishnan, Keerthi, Bhaskara Srutha},
journal = {Mathematica Bohemica},
keywords = {Mittag-Leffler type Poisson distribution; analytic function; conic-type region; geometric properties},
language = {eng},
number = {4},
pages = {455-470},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series},
url = {http://eudml.org/doc/299657},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Nithiyanandham, Elumalai Krishnan
AU - Keerthi, Bhaskara Srutha
TI - Properties on subclass of Sakaguchi type functions using a Mittag-Leffler type Poisson distribution series
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 455
EP - 470
AB - Few subclasses of Sakaguchi type functions are introduced in this article, based on the notion of Mittag-Leffler type Poisson distribution series. The class $ \mathfrak {p}\text{-}\Phi \mathcal {S}^*(t,\mu ,\nu ,J,K) $ is defined, and the necessary and sufficient condition, convex combination, growth distortion bounds, and partial sums are discussed.
LA - eng
KW - Mittag-Leffler type Poisson distribution; analytic function; conic-type region; geometric properties
UR - http://eudml.org/doc/299657
ER -
References
top- Agarwal, R. P., A propos d'une note de M. Pierre Humbert, C. R. Acad. Sci., Paris 236 (1953), 2031-2032 French. (1953) Zbl0051.30801MR0055502
- Alessa, N., Venkateswarlu, B., Reddy, P. T., Loganathan, K., Tamilvanan, K., 10.1155/2021/6618163, J. Funct. Spaces 2021 (2021), Article ID 6618163, 7 pages. (2021) Zbl1461.30036MR4214806DOI10.1155/2021/6618163
- Kanas, S., Răducanu, D., 10.2478/s12175-014-0268-9, Math. Slovaca 64 (2014), 1183-1196. (2014) Zbl1349.30054MR3277846DOI10.2478/s12175-014-0268-9
- Kanas, S., Srivastava, H. M., 10.1080/10652460008819249, Integral Transforms Spec. Funct. 9 (2000), 121-132. (2000) Zbl0959.30007MR1784495DOI10.1080/10652460008819249
- Kanas, S., Wiśniowska, A., 10.1016/S0377-0427(99)00018-7, J. Comput. Appl. Math. 105 (1999), 327-336. (1999) Zbl0944.30008MR1690599DOI10.1016/S0377-0427(99)00018-7
- Kanas, S., Wiśniowska, A., Conic domains and starlike functions, Rev. Roum. Math. Pures Appl. 45 (2000), 647-657. (2000) Zbl0990.30010MR1836295
- Khan, M. G., Ahmad, B., Khan, N., Mashwani, W. K., Arjika, S., Khan, B., Chinram, R., 10.1155/2021/4343163, J. Funct. Spaces 2021 (2021), Article ID 4343163, 9 pages. (2021) Zbl1508.30027MR4296642DOI10.1155/2021/4343163
- Mahmood, T., Naeem, M., Hussain, S., Khan, S., Altinkaya, Ş., 10.5831/HMJ.2020.42.3.577, Honam Math. J. 42 (2020), 577-590. (2020) Zbl1467.30010MR4161224DOI10.5831/HMJ.2020.42.3.577
- Mittag-Leffler, G. M., Une généralisation de l'intégrale de Laplace-Abel, C. R. Acad. Sci., Paris 136 (1903), 537-539 French 9999JFM99999 34.0434.02. (1903)
- Mittag-Leffler, G. M., Sur la nouvelle fonction , C. R. Acad. Sci., Paris 137 (1904), 554-558 French 9999JFM99999 34.0435.01. (1904)
- Mittag-Leffler, G., 10.1007/BF02403200, Acta Math. 29 (1905), 101-181 French 9999JFM99999 36.0469.02. (1905) MR1555012DOI10.1007/BF02403200
- Noor, K. I., Malik, S. N., 10.1016/j.camwa.2011.07.006, Comput. Math. Appl. 62 (2011), 2209-2217. (2011) Zbl1231.30011MR2831681DOI10.1016/j.camwa.2011.07.006
- Porwal, S., Dixit, K. K., 10.1007/s13370-016-0427-y, Afr. Mat. 28 (2017), 29-34. (2017) Zbl1373.60033MR3613617DOI10.1007/s13370-016-0427-y
- Wiman, A., 10.1007/BF02403202, Acta Math. 29 (1905), 191-201 German 9999JFM99999 36.0471.01. (1905) MR1555014DOI10.1007/BF02403202
- Wiman, A., 10.1007/BF02403204, Acta Math. 29 (1905), 217-234 German 9999JFM99999 36.0472.01. (1905) MR1555016DOI10.1007/BF02403204
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.