Sakaguchi type functions defined by balancing polynomials
Gunasekar Saravanan; Sudharsanan Baskaran; Balasubramaniam Vanithakumari; Serap Bulut
Mathematica Bohemica (2025)
- Issue: 1, page 71-83
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSaravanan, Gunasekar, et al. "Sakaguchi type functions defined by balancing polynomials." Mathematica Bohemica (2025): 71-83. <http://eudml.org/doc/299892>.
@article{Saravanan2025,
abstract = {The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients $\vert a_\{2\}\vert $ and $\vert a_\{3\}\vert $ have also been estimated.},
author = {Saravanan, Gunasekar, Baskaran, Sudharsanan, Vanithakumari, Balasubramaniam, Bulut, Serap},
journal = {Mathematica Bohemica},
keywords = {analytic function; bi-univalent function; Sakaguchi type function; balancing polynomial},
language = {eng},
number = {1},
pages = {71-83},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sakaguchi type functions defined by balancing polynomials},
url = {http://eudml.org/doc/299892},
year = {2025},
}
TY - JOUR
AU - Saravanan, Gunasekar
AU - Baskaran, Sudharsanan
AU - Vanithakumari, Balasubramaniam
AU - Bulut, Serap
TI - Sakaguchi type functions defined by balancing polynomials
JO - Mathematica Bohemica
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 71
EP - 83
AB - The class of Sakaguchi type functions defined by balancing polynomials has been introduced as a novel subclass of bi-univalent functions. The bounds for the Fekete-Szegö inequality and the initial coefficients $\vert a_{2}\vert $ and $\vert a_{3}\vert $ have also been estimated.
LA - eng
KW - analytic function; bi-univalent function; Sakaguchi type function; balancing polynomial
UR - http://eudml.org/doc/299892
ER -
References
top- Aktaş, İ., Karaman, İ., 10.55213/kmujens.1252471, KMU J. Eng. Natur. Sci. 5 (2023), 25-32. (2023) DOI10.55213/kmujens.1252471
- Aldawish, I., Al-Hawary, T., Frasin, B. A., 10.3390/math8050783, Mathematics 8 (2020), Article ID 783, 11 pages. (2020) MR4325637DOI10.3390/math8050783
- Amourah, A., Al-Hawary, T., Frasin, B. A., 10.1007/s13370-021-00881-x, Afr. Mat. 32 (2021), 1059-1066. (2021) Zbl1488.30030MR4293839DOI10.1007/s13370-021-00881-x
- Behera, A., Panda, G. K., 10.1080/00150517.1999.12428864, Fibonacci Q. 37 (1999), 98-105. (1999) Zbl0962.11014MR1690458DOI10.1080/00150517.1999.12428864
- Brannan, D. A., (eds.), J. G. Clunie, Aspects of Contemporary Complex Analysis, Academic Press, London (1980). (1980) Zbl0483.00007MR0623462
- Brannan, D. A., Clunie, J., Kirwan, W. E., 10.4153/CJM-1970-055-8, Can. J. Math. 22 (1970), 476-485. (1970) Zbl0197.35602MR0260994DOI10.4153/CJM-1970-055-8
- Davala, R. K., Panda, G. K., On sum and ratio formulas for balancing numbers, J. Indian Math. Soc., New Ser. 82 (2015), 23-32. (2015) Zbl1371.11038MR3290017
- Frasin, B. A., Coefficient inequalities for certain classes of Sakaguchi type functions, Int. J. Nonlinear Sci. 10 (2010), 206-211. (2010) Zbl1216.30008MR2745244
- Frontczak, R., 10.12988/ams.2018.87111, Appl. Math. Sci. 12 (2018), 1201-1208. (2018) DOI10.12988/ams.2018.87111
- Frontczak, R., 10.12988/ijma.2018.81067, Int. J. Math. Anal. 12 (2018), 585-594. (2018) DOI10.12988/ijma.2018.81067
- Frontczak, R., 10.12988/ams.2019.812183, Appl. Math. Sci. 13 (2019), 57-66. (2019) DOI10.12988/ams.2019.812183
- Keskin, R., Karaatlı, O., Some new properties of balancing numbers and square triangular numbers, J. Integer Seq. 15 (2012), Articl ID 12.1.4, 13 pages. (2012) Zbl1291.11030MR2872461
- Komatsu, T., Panda, G. K., On several kinds of sums of balancing numbers, Ars Comb. 153 (2020), 127-147. (2020) Zbl1513.11047MR4253120
- Lewin, M., 10.1090/S0002-9939-1967-0206255-1, Proc. Am. Math. Soc. 18 (1967), 63-68. (1967) Zbl0158.07802MR0206255DOI10.1090/S0002-9939-1967-0206255-1
- Netanyahu, E., 10.1007/BF00247676, Arch. Ration. Mech. Anal. 32 (1969), 100-112. (1969) Zbl0186.39703MR0235110DOI10.1007/BF00247676
- Owa, S., Sekine, T., Yamakawa, R., Notes on Sakaguchi functions, Aust. J. Math. Anal. Appl. 3 (2006), Article ID 12, 7 pages. (2006) Zbl1090.30024MR2223016
- Owa, S., Sekine, T., Yamakawa, R., 10.1016/j.amc.2006.08.133, Appl. Math. Comput. 187 (2007), 356-361. (2007) Zbl1113.30018MR2323589DOI10.1016/j.amc.2006.08.133
- Patel, B. K., Irmak, N., Ray, P. K., Incomplete balancing and Lucas-balancing numbers, Math. Rep., Buchar. 20 (2018), 59-72. (2018) Zbl1399.11045MR3781687
- Ray, P. K., Some congruences for balancing and Lucas-balancing numbers and their applications, Integers 14 (2014), Article ID A08, 8 pages. (2014) Zbl1284.11031MR3239589
- Ray, P. K., Balancing and Lucas-balancing sums by matrix methods, Math. Rep., Buchar. 17 (2015), 225-233. (2015) Zbl1374.11024MR3375730
- Ray, P. K., 10.1016/j.asej.2016.01.014, Ain Shams Engin. J. 9 (2018), 395-402. (2018) DOI10.1016/j.asej.2016.01.014
- Sakaguchi, K., 10.2969/jmsj/01110072, J. Math. Soc. Japan 11 (1959), 72-75. (1959) Zbl0085.29602MR0107005DOI10.2969/jmsj/01110072
- Shaba, T. G., Subclass of bi-univalent functions satisfying subordinate conditions defined by Frasin differential operator, Turkish J. Ineq. 4 (2020), 50-58. (2020)
- Srivastava, H. M., Mishra, A. K., Gochhayat, P., 10.1016/j.aml.2010.05.009, Appl. Math. Lett. 23 (2010), 1188-1192. (2010) Zbl1201.30020MR2665593DOI10.1016/j.aml.2010.05.009
- Vijayalakshmi, S. P., Bulut, S., Sudharsan, T. V., 10.1142/S1793557122502126, Asian-Eur. J. Math. 15 (2022), Article ID 2250212, 9 pages. (2022) Zbl1504.30016MR4504278DOI10.1142/S1793557122502126
- Xu, Q.-H., Gui, Y.-C., Srivastava, H. M., 10.1016/j.aml.2011.11.013, Appl. Math. Lett. 25 (2012), 990-994. (2012) Zbl1244.30033MR2902367DOI10.1016/j.aml.2011.11.013
- Xu, Q.-H., Xiao, H.-G., Srivastava, H. M., 10.1016/j.amc.2012.05.034, Appl. Math. Comput. 218 (2012), 11461-11465. (2012) Zbl1284.30009MR2943990DOI10.1016/j.amc.2012.05.034
- Yousef, F., Amourah, A., Frasin, B. A., Bulboacă, T., 10.3390/axioms11060267, Axioms 11 (2022), Article ID 267, 8 pages. (2022) DOI10.3390/axioms11060267
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.