Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values

Wei Ma; Yuqing Zhu; Yawei Dang

Applications of Mathematics (2025)

  • Issue: 1, page 65-95
  • ISSN: 0862-7940

Abstract

top
We study the convergence of two-step Ulm-Chebyshev-like method for solving the inverse singular value problems. We focus on the case when the given singular values are positive and multiple. This work extends the result of W. Ma (2022). We show that the new method is cubically convergent. Moreover, numerical experiments are given in the last section, which show that the proposed method is practical and efficient.

How to cite

top

Ma, Wei, Zhu, Yuqing, and Dang, Yawei. "Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values." Applications of Mathematics (2025): 65-95. <http://eudml.org/doc/299905>.

@article{Ma2025,
abstract = {We study the convergence of two-step Ulm-Chebyshev-like method for solving the inverse singular value problems. We focus on the case when the given singular values are positive and multiple. This work extends the result of W. Ma (2022). We show that the new method is cubically convergent. Moreover, numerical experiments are given in the last section, which show that the proposed method is practical and efficient.},
author = {Ma, Wei, Zhu, Yuqing, Dang, Yawei},
journal = {Applications of Mathematics},
keywords = {inverse singular value problem; two-step; Ulm-Chebyshev-like method; cubically convergent; multiple singular values},
language = {eng},
number = {1},
pages = {65-95},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values},
url = {http://eudml.org/doc/299905},
year = {2025},
}

TY - JOUR
AU - Ma, Wei
AU - Zhu, Yuqing
AU - Dang, Yawei
TI - Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 65
EP - 95
AB - We study the convergence of two-step Ulm-Chebyshev-like method for solving the inverse singular value problems. We focus on the case when the given singular values are positive and multiple. This work extends the result of W. Ma (2022). We show that the new method is cubically convergent. Moreover, numerical experiments are given in the last section, which show that the proposed method is practical and efficient.
LA - eng
KW - inverse singular value problem; two-step; Ulm-Chebyshev-like method; cubically convergent; multiple singular values
UR - http://eudml.org/doc/299905
ER -

References

top
  1. Alonso, P., Flores-Becerra, G., Vidal, A. M., Sequential and parallel algorithms for the inverse Toeplitz singular value problem, Proceedings of the 2006 International Conference on Scientific Computing, CSC 2006 CSREA Press, Las Vegas (2006), 91-96. (2006) 
  2. Bai, Z.-J., Chu, D., Sun, D., 10.1137/060656346, SIAM J. Sci. Comput. 29 (2007), 2531-2561. (2007) Zbl1154.65312MR2357626DOI10.1137/060656346
  3. Bai, Z.-J., Jin, X.-Q., Vong, S.-W., 10.3934/naco.2012.2.187, Numer. Algebra Control Optim. 2 (2012), 187-192. (2012) Zbl1246.65060MR2904125DOI10.3934/naco.2012.2.187
  4. Bai, Z.-J., Morini, B., Xu, S.-F., 10.1016/j.cam.2005.06.050, J. Comput. Appl. Math. 198 (2007), 344-360. (2007) Zbl1110.65030MR2260673DOI10.1016/j.cam.2005.06.050
  5. Bai, Z.-J., Xu, S., 10.1016/j.laa.2008.03.008, Linear Algebra Appl. 429 (2008), 527-547. (2008) Zbl1154.65021MR2419944DOI10.1016/j.laa.2008.03.008
  6. Chen, X. S., Sun, H.-W., 10.1080/03081087.2018.1440521, Linear Multilinear Algebra 67 (2019), 987-994. (2019) Zbl1411.65062MR3923041DOI10.1080/03081087.2018.1440521
  7. Chu, M. T., 10.1137/0729054, SIAM J. Numer. Anal. 29 (1992), 885-903. (1992) Zbl0757.65041MR1163362DOI10.1137/0729054
  8. Chu, M. T., Golub, G. H., 10.1017/S0962492902000016, Acta Numerica 11 (2002), 1-71. (2002) Zbl1105.65326MR2008966DOI10.1017/S0962492902000016
  9. Chu, M. T., Golub, G. H., 10.1093/acprof:oso/9780198566649.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005). (2005) Zbl1075.65058MR2263317DOI10.1093/acprof:oso/9780198566649.001.0001
  10. Ezquerro, J. A., Hernández, M. A., 10.1016/j.nonrwa.2011.07.039, Nonlinear Anal., Real World Appl. 13 (2012), 14-26. (2012) Zbl1238.65048MR2846814DOI10.1016/j.nonrwa.2011.07.039
  11. Flores-Becerra, G., Garcia, V. M., Vidal, A. M., Parallelization and comparison of local convergent algorithms for solving the inverse additive singular value problem, WSEAS Trans. Math. 5 (2006), 81-88. (2006) MR2194662
  12. Freund, R. W., Nachtigal, N. M., 10.1007/BF01385726, Numer. Math. 60 (1991), 315-339. (1991) Zbl0754.65034MR1137197DOI10.1007/BF01385726
  13. Friedland, S., Nocedal, J., Overton, M. L., 10.1137/0724043, SIAM. J. Numer. Anal. 24 (1987), 634-667. (1987) Zbl0622.65030MR0888754DOI10.1137/0724043
  14. Ma, W., 10.1002/nla.2440, Numer. Linear Algebra Appl. 29 (2022), Article ID e2440, 20 pages. (2022) Zbl07584148MR4541746DOI10.1002/nla.2440
  15. Ma, W., Bai, Z.-J., 10.1088/0266-5611/28/12/125001, Inverse Prob. 28 (2012), Article ID 125001, 24 pages. (2012) Zbl1268.65053MR2997010DOI10.1088/0266-5611/28/12/125001
  16. Ma, W., Chen, X.-S., 10.1007/s11075-019-00783-x, Numer. Algorithms 84 (2020), 847-870. (2020) Zbl1442.65097MR4110687DOI10.1007/s11075-019-00783-x
  17. Montaño, E., Salas, M., Soto, R. L., 10.1016/j.camwa.2007.11.030, Comput. Math. Appl. 56 (2008), 30-42. (2008) Zbl1145.15304MR2427682DOI10.1016/j.camwa.2007.11.030
  18. Montaño, E., Salas, M., Soto, R. L., 10.4067/S0716-09172008000300005, Proyecciones 27 (2008), 289-305. (2008) Zbl1178.15006MR2470405DOI10.4067/S0716-09172008000300005
  19. Politi, T., 10.1007/3-540-44862-4_14, Computational science -- ICCS 2003 Lecture Notes in Computer Science 2658. Springer, Berlin (2003), 121-130. (2003) Zbl1147.65306MR2088389DOI10.1007/3-540-44862-4_14
  20. Potra, F. A., Qi, L., Sun, D., 10.1007/s002110050369, Numer. Math. 80 (1998), 305-324. (1998) Zbl0914.65051MR1645041DOI10.1007/s002110050369
  21. Qi, L., 10.1287/moor.18.1.227, Math. Oper. Res. 18 (1993), 227-244. (1993) Zbl0776.65037MR1250115DOI10.1287/moor.18.1.227
  22. Queiró, J. F., 10.1016/0024-3795(94)90491-X, Linear Algebra Appl. 197-198 (1994), 277-282. (1994) Zbl0793.15007MR1275618DOI10.1016/0024-3795(94)90491-X
  23. Rockafellar, R. T., 10.1515/9781400873173, Princeton Mathematical Series 28. Princeton University Press, Princeton (1970). (1970) Zbl0193.18401MR0274683DOI10.1515/9781400873173
  24. Saunders, C. S., Hu, J., Christoffersen, C. E., Steer, M. B., 10.1109/TMTT.2011.2108311, IEEE Trans. Microwave Theory Tech. 59 (2011), 837-847. (2011) DOI10.1109/TMTT.2011.2108311
  25. Shen, W.-P., Li, C., Jin, X.-Q., Yao, J.-C., 10.1016/j.apnum.2016.06.008, Appl. Numer. Math. 109 (2016), 138-156. (2016) Zbl1348.65073MR3541948DOI10.1016/j.apnum.2016.06.008
  26. Sun, D., Sun, J., 10.1137/s0036142901393814, SIAM J. Numer. Anal. 40 (2002), 2352-2367. (2002) Zbl1041.65037MR1974190DOI10.1137/s0036142901393814
  27. J. A. Tropp, I. S. Dhillon, R. W. Heath, Jr., 10.1109/TIT.2004.836698, IEEE Trans. Inf. Theory 50 (2004), 2916-2921. (2004) Zbl1288.94006MR2097014DOI10.1109/TIT.2004.836698
  28. Vong, S.-W., Bai, Z.-J., Jin, X.-Q., 10.1137/100815748, SIAM J. Matrix Anal. Appl. 32 (2011), 412-429. (2011) Zbl1232.65063MR2817496DOI10.1137/100815748
  29. Xu, S.-F., An Introduction to Inverse Algebraic Eigenvalue Problems, Peking University Press, Peking (1998). (1998) Zbl0927.65057MR1682124
  30. Yuan, S., Liao, A., Yao, G., 10.1007/s11075-011-9526-x, Numer. Algorithms 60 (2012), 501-522. (2012) Zbl1247.65053MR2927669DOI10.1007/s11075-011-9526-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.