Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values
Wei Ma; Yuqing Zhu; Yawei Dang
Applications of Mathematics (2025)
- Issue: 1, page 65-95
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMa, Wei, Zhu, Yuqing, and Dang, Yawei. "Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values." Applications of Mathematics (2025): 65-95. <http://eudml.org/doc/299905>.
@article{Ma2025,
abstract = {We study the convergence of two-step Ulm-Chebyshev-like method for solving the inverse singular value problems. We focus on the case when the given singular values are positive and multiple. This work extends the result of W. Ma (2022). We show that the new method is cubically convergent. Moreover, numerical experiments are given in the last section, which show that the proposed method is practical and efficient.},
author = {Ma, Wei, Zhu, Yuqing, Dang, Yawei},
journal = {Applications of Mathematics},
keywords = {inverse singular value problem; two-step; Ulm-Chebyshev-like method; cubically convergent; multiple singular values},
language = {eng},
number = {1},
pages = {65-95},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values},
url = {http://eudml.org/doc/299905},
year = {2025},
}
TY - JOUR
AU - Ma, Wei
AU - Zhu, Yuqing
AU - Dang, Yawei
TI - Two-step Ulm-Chebyshev-like method for inverse singular value problems with multiple singular values
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 65
EP - 95
AB - We study the convergence of two-step Ulm-Chebyshev-like method for solving the inverse singular value problems. We focus on the case when the given singular values are positive and multiple. This work extends the result of W. Ma (2022). We show that the new method is cubically convergent. Moreover, numerical experiments are given in the last section, which show that the proposed method is practical and efficient.
LA - eng
KW - inverse singular value problem; two-step; Ulm-Chebyshev-like method; cubically convergent; multiple singular values
UR - http://eudml.org/doc/299905
ER -
References
top- Alonso, P., Flores-Becerra, G., Vidal, A. M., Sequential and parallel algorithms for the inverse Toeplitz singular value problem, Proceedings of the 2006 International Conference on Scientific Computing, CSC 2006 CSREA Press, Las Vegas (2006), 91-96. (2006)
- Bai, Z.-J., Chu, D., Sun, D., 10.1137/060656346, SIAM J. Sci. Comput. 29 (2007), 2531-2561. (2007) Zbl1154.65312MR2357626DOI10.1137/060656346
- Bai, Z.-J., Jin, X.-Q., Vong, S.-W., 10.3934/naco.2012.2.187, Numer. Algebra Control Optim. 2 (2012), 187-192. (2012) Zbl1246.65060MR2904125DOI10.3934/naco.2012.2.187
- Bai, Z.-J., Morini, B., Xu, S.-F., 10.1016/j.cam.2005.06.050, J. Comput. Appl. Math. 198 (2007), 344-360. (2007) Zbl1110.65030MR2260673DOI10.1016/j.cam.2005.06.050
- Bai, Z.-J., Xu, S., 10.1016/j.laa.2008.03.008, Linear Algebra Appl. 429 (2008), 527-547. (2008) Zbl1154.65021MR2419944DOI10.1016/j.laa.2008.03.008
- Chen, X. S., Sun, H.-W., 10.1080/03081087.2018.1440521, Linear Multilinear Algebra 67 (2019), 987-994. (2019) Zbl1411.65062MR3923041DOI10.1080/03081087.2018.1440521
- Chu, M. T., 10.1137/0729054, SIAM J. Numer. Anal. 29 (1992), 885-903. (1992) Zbl0757.65041MR1163362DOI10.1137/0729054
- Chu, M. T., Golub, G. H., 10.1017/S0962492902000016, Acta Numerica 11 (2002), 1-71. (2002) Zbl1105.65326MR2008966DOI10.1017/S0962492902000016
- Chu, M. T., Golub, G. H., 10.1093/acprof:oso/9780198566649.001.0001, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005). (2005) Zbl1075.65058MR2263317DOI10.1093/acprof:oso/9780198566649.001.0001
- Ezquerro, J. A., Hernández, M. A., 10.1016/j.nonrwa.2011.07.039, Nonlinear Anal., Real World Appl. 13 (2012), 14-26. (2012) Zbl1238.65048MR2846814DOI10.1016/j.nonrwa.2011.07.039
- Flores-Becerra, G., Garcia, V. M., Vidal, A. M., Parallelization and comparison of local convergent algorithms for solving the inverse additive singular value problem, WSEAS Trans. Math. 5 (2006), 81-88. (2006) MR2194662
- Freund, R. W., Nachtigal, N. M., 10.1007/BF01385726, Numer. Math. 60 (1991), 315-339. (1991) Zbl0754.65034MR1137197DOI10.1007/BF01385726
- Friedland, S., Nocedal, J., Overton, M. L., 10.1137/0724043, SIAM. J. Numer. Anal. 24 (1987), 634-667. (1987) Zbl0622.65030MR0888754DOI10.1137/0724043
- Ma, W., 10.1002/nla.2440, Numer. Linear Algebra Appl. 29 (2022), Article ID e2440, 20 pages. (2022) Zbl07584148MR4541746DOI10.1002/nla.2440
- Ma, W., Bai, Z.-J., 10.1088/0266-5611/28/12/125001, Inverse Prob. 28 (2012), Article ID 125001, 24 pages. (2012) Zbl1268.65053MR2997010DOI10.1088/0266-5611/28/12/125001
- Ma, W., Chen, X.-S., 10.1007/s11075-019-00783-x, Numer. Algorithms 84 (2020), 847-870. (2020) Zbl1442.65097MR4110687DOI10.1007/s11075-019-00783-x
- Montaño, E., Salas, M., Soto, R. L., 10.1016/j.camwa.2007.11.030, Comput. Math. Appl. 56 (2008), 30-42. (2008) Zbl1145.15304MR2427682DOI10.1016/j.camwa.2007.11.030
- Montaño, E., Salas, M., Soto, R. L., 10.4067/S0716-09172008000300005, Proyecciones 27 (2008), 289-305. (2008) Zbl1178.15006MR2470405DOI10.4067/S0716-09172008000300005
- Politi, T., 10.1007/3-540-44862-4_14, Computational science -- ICCS 2003 Lecture Notes in Computer Science 2658. Springer, Berlin (2003), 121-130. (2003) Zbl1147.65306MR2088389DOI10.1007/3-540-44862-4_14
- Potra, F. A., Qi, L., Sun, D., 10.1007/s002110050369, Numer. Math. 80 (1998), 305-324. (1998) Zbl0914.65051MR1645041DOI10.1007/s002110050369
- Qi, L., 10.1287/moor.18.1.227, Math. Oper. Res. 18 (1993), 227-244. (1993) Zbl0776.65037MR1250115DOI10.1287/moor.18.1.227
- Queiró, J. F., 10.1016/0024-3795(94)90491-X, Linear Algebra Appl. 197-198 (1994), 277-282. (1994) Zbl0793.15007MR1275618DOI10.1016/0024-3795(94)90491-X
- Rockafellar, R. T., 10.1515/9781400873173, Princeton Mathematical Series 28. Princeton University Press, Princeton (1970). (1970) Zbl0193.18401MR0274683DOI10.1515/9781400873173
- Saunders, C. S., Hu, J., Christoffersen, C. E., Steer, M. B., 10.1109/TMTT.2011.2108311, IEEE Trans. Microwave Theory Tech. 59 (2011), 837-847. (2011) DOI10.1109/TMTT.2011.2108311
- Shen, W.-P., Li, C., Jin, X.-Q., Yao, J.-C., 10.1016/j.apnum.2016.06.008, Appl. Numer. Math. 109 (2016), 138-156. (2016) Zbl1348.65073MR3541948DOI10.1016/j.apnum.2016.06.008
- Sun, D., Sun, J., 10.1137/s0036142901393814, SIAM J. Numer. Anal. 40 (2002), 2352-2367. (2002) Zbl1041.65037MR1974190DOI10.1137/s0036142901393814
- J. A. Tropp, I. S. Dhillon, R. W. Heath, Jr., 10.1109/TIT.2004.836698, IEEE Trans. Inf. Theory 50 (2004), 2916-2921. (2004) Zbl1288.94006MR2097014DOI10.1109/TIT.2004.836698
- Vong, S.-W., Bai, Z.-J., Jin, X.-Q., 10.1137/100815748, SIAM J. Matrix Anal. Appl. 32 (2011), 412-429. (2011) Zbl1232.65063MR2817496DOI10.1137/100815748
- Xu, S.-F., An Introduction to Inverse Algebraic Eigenvalue Problems, Peking University Press, Peking (1998). (1998) Zbl0927.65057MR1682124
- Yuan, S., Liao, A., Yao, G., 10.1007/s11075-011-9526-x, Numer. Algorithms 60 (2012), 501-522. (2012) Zbl1247.65053MR2927669DOI10.1007/s11075-011-9526-x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.