Boundary value problems with bounded ϕ -Laplacian and nonlocal conditions of integral type

Daria Bugajewska; Jean Mawhin

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 277-288
  • ISSN: 0011-4642

Abstract

top
We study the existence of solutions to nonlinear boundary value problems for second order quasilinear ordinary differential equations involving bounded ϕ -Laplacian, subject to integral boundary conditions formulated in terms of Riemann-Stieltjes integrals.

How to cite

top

Bugajewska, Daria, and Mawhin, Jean. "Boundary value problems with bounded $\varphi $-Laplacian and nonlocal conditions of integral type." Czechoslovak Mathematical Journal (2025): 277-288. <http://eudml.org/doc/299919>.

@article{Bugajewska2025,
abstract = {We study the existence of solutions to nonlinear boundary value problems for second order quasilinear ordinary differential equations involving bounded $\varphi $-Laplacian, subject to integral boundary conditions formulated in terms of Riemann-Stieltjes integrals.},
author = {Bugajewska, Daria, Mawhin, Jean},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundary value problem; $\varphi $-Laplacian; functions of bounded variation; Riemann-Stieltjes integral; prescribed curvature},
language = {eng},
number = {1},
pages = {277-288},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundary value problems with bounded $\varphi $-Laplacian and nonlocal conditions of integral type},
url = {http://eudml.org/doc/299919},
year = {2025},
}

TY - JOUR
AU - Bugajewska, Daria
AU - Mawhin, Jean
TI - Boundary value problems with bounded $\varphi $-Laplacian and nonlocal conditions of integral type
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 277
EP - 288
AB - We study the existence of solutions to nonlinear boundary value problems for second order quasilinear ordinary differential equations involving bounded $\varphi $-Laplacian, subject to integral boundary conditions formulated in terms of Riemann-Stieltjes integrals.
LA - eng
KW - boundary value problem; $\varphi $-Laplacian; functions of bounded variation; Riemann-Stieltjes integral; prescribed curvature
UR - http://eudml.org/doc/299919
ER -

References

top
  1. Appell, J., Bugajewska, D., Reinwand, S., 10.14232/ejqtde.2020.1.69, Electron. J. Qual. Theory Differ. Equ. 2020 (2020), Article ID 69, 18 pages. (2020) Zbl1474.34121MR4208476DOI10.14232/ejqtde.2020.1.69
  2. Bereanu, C., Mawhin, J., Nonlinear Neumann boundary value problems with φ -Laplacian operators, An. Ştiinţ. Univ. Ovidus Constanţa, Ser. Mat. 12 (2004), 73-82. (2004) Zbl1117.34015MR2209116
  3. Bereanu, C., Mawhin, J., Boundary-value problems with non-surjective φ -Laplacian and one-sided bounded nonlinearity, Adv. Differ. Equ. 11 (2006), 35-60. (2006) Zbl1111.34016MR2192414
  4. Bonheure, D., Habets, P., Obersnel, F., Omari, P., Classical and non-classical positive solutions of a prescribed curvature equation with singularities, Rend. Ist. Mat. Univ. Trieste 39 (2007), 63-85. (2007) Zbl1160.34015MR2441611
  5. Bugajewska, D., Infante, G., Kasprzak, P., 10.4171/zaa/1594, Z. Anal. Anwend. 36 (2017), 393-417. (2017) Zbl1384.45005MR3713050DOI10.4171/zaa/1594
  6. Habets, P., Omari, P., 10.1142/S0219199707002617, Commun. Contemp. Math. 9 (2007), 701-730. (2007) Zbl1153.34015MR2361738DOI10.1142/S0219199707002617
  7. Infante, G., Webb, J. R. L., 10.1017/S0013091505000532, Proc. Edinb. Math. Soc., II. Ser. 49 (2006), 637-656 9999DOI99999 10.1017/S0013091505000532 . (2006) Zbl1115.34026MR2266153DOI10.1017/S0013091505000532
  8. Kusahara, T., Usami, H., 10.1023/A:1022409808258, Czech. Math. J. 50 (2000), 185-196. (2000) Zbl1046.34009MR1745471DOI10.1023/A:1022409808258
  9. Leray, J., Schauder, J., 10.24033/asens.836, Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. (1934) Zbl0009.07301MR1509338DOI10.24033/asens.836
  10. Mawhin, J., 10.1090/cbms/040, Regional Conference Series in Mathematics 40. AMS, Providence (1979). (1979) Zbl0414.34025MR0525202DOI10.1090/cbms/040
  11. Mawhin, J., 10.4064/bc77-0-15, Fixed Point Theory and its Applications Banach Center Publications 77. Institute of Mathematics, Polish Academy of Sciences, Warsaw (2007), 201-214. (2007) Zbl1129.34010MR2338585DOI10.4064/bc77-0-15
  12. Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
  13. Webb, J. R. L., Positive solutions of a boundary value problem with integral boundary conditions, Electron. J. Differ. Equ. 2011 (2011), Article ID 55, 10 pages. (2011) Zbl1229.34039MR2801240

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.