The Picard-Lindelöf Theorem and continuation of solutions for measure differential equations

Gastón Beltritti; Stefania Demaria; Graciela Giubergia; Fernando Mazzone

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 47-68
  • ISSN: 0011-4642

Abstract

top
We obtain, by means of Banach's Fixed Point Theorem, convergence for the Picard iterations associated to a general nonlinear system of measure differential equations. We study the existence of left-continuous solutions defined on maximal intervals and we establish some properties of these maximal solutions.

How to cite

top

Beltritti, Gastón, et al. "The Picard-Lindelöf Theorem and continuation of solutions for measure differential equations." Czechoslovak Mathematical Journal (2025): 47-68. <http://eudml.org/doc/299930>.

@article{Beltritti2025,
abstract = {We obtain, by means of Banach's Fixed Point Theorem, convergence for the Picard iterations associated to a general nonlinear system of measure differential equations. We study the existence of left-continuous solutions defined on maximal intervals and we establish some properties of these maximal solutions.},
author = {Beltritti, Gastón, Demaria, Stefania, Giubergia, Graciela, Mazzone, Fernando},
journal = {Czechoslovak Mathematical Journal},
keywords = {measure differential equation; Lebesgue-Stieltjes integral; fixed point theory; maximal solution},
language = {eng},
number = {1},
pages = {47-68},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Picard-Lindelöf Theorem and continuation of solutions for measure differential equations},
url = {http://eudml.org/doc/299930},
year = {2025},
}

TY - JOUR
AU - Beltritti, Gastón
AU - Demaria, Stefania
AU - Giubergia, Graciela
AU - Mazzone, Fernando
TI - The Picard-Lindelöf Theorem and continuation of solutions for measure differential equations
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 47
EP - 68
AB - We obtain, by means of Banach's Fixed Point Theorem, convergence for the Picard iterations associated to a general nonlinear system of measure differential equations. We study the existence of left-continuous solutions defined on maximal intervals and we establish some properties of these maximal solutions.
LA - eng
KW - measure differential equation; Lebesgue-Stieltjes integral; fixed point theory; maximal solution
UR - http://eudml.org/doc/299930
ER -

References

top
  1. Ashordia, M., 10.1016/j.camwa.2004.04.041, Comput. Math. Appl. 50 (2005), 957-982. (2005) Zbl1090.34043MR2165650DOI10.1016/j.camwa.2004.04.041
  2. Bainov, D., Simeonov, P., 10.1201/9780203751206, Pitman Monographs and Surveys in Pure and Applied Mathematics 66. John Wiley & Sons, New York (1993). (1993) Zbl0815.34001MR1266625DOI10.1201/9780203751206
  3. Bartle, R. G., 10.4064/sm-15-3-337-352, Stud. Math. 15 (1956), 337-352. (1956) Zbl0070.28102MR0080721DOI10.4064/sm-15-3-337-352
  4. Bedyuk, N. V., Yablonskii, O. L., 10.1134/S0012266109010029, Differ. Equ. 45 (2009), 6-17. (2009) Zbl1177.34010MR2597089DOI10.1134/S0012266109010029
  5. Bedziuk, N., Yablonski, A., 10.1007/s00030-009-0052-7, NoDEA, Nonlinear Differ. Equ. Appl. 17 (2010), 249-270. (2010) Zbl1196.34021MR2639154DOI10.1007/s00030-009-0052-7
  6. Benchohra, M., Henderson, J., Ntouyas, S., 10.1155/9789775945501, Contemporary Mathematics and Its Applications 2. Hindawi, New York (2006). (2006) Zbl1130.34003MR2322133DOI10.1155/9789775945501
  7. Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita, 10.1002/9781119655022, John Wiley & Sons, Hoboken (2021). (2021) Zbl1475.34001MR4485099DOI10.1002/9781119655022
  8. Brogliato, B., 10.1007/978-3-319-28664-8, Communications and Control Engineering. Springer, Cham (2016). (2016) Zbl1333.74002MR3467591DOI10.1007/978-3-319-28664-8
  9. Burk, F. E., 10.7135/UPO9781614442097, The Dolciani Mathematical Expositions 31. Mathematical Association of America, Washington (2007). (2007) Zbl1127.26300MR2311537DOI10.7135/UPO9781614442097
  10. Buttazzo, G., Giaquinta, M., Hildebrandt, S., One-Dimensional Variational Problems: An Introduction, Oxford Lecture Series in Mathematics and its Applications 15. Clarendon Press, Oxford (1998). (1998) Zbl0915.49001MR1694383
  11. Cao, Y., Sun, J., 10.1016/j.jmaa.2014.12.042, J. Math. Anal. Appl. 425 (2015), 621-631. (2015) Zbl1304.34015MR3303881DOI10.1016/j.jmaa.2014.12.042
  12. Carter, M., Brunt, B. van, 10.1007/978-1-4612-1174-7, Undergraduate Texts in Mathematics. Springer, New York (2000). (2000) Zbl0948.28001MR1759133DOI10.1007/978-1-4612-1174-7
  13. Cichoń, M., Satco, B. R., 10.1186/1687-1847-2014-56, Adv. Difference Equ. 2014 (2014), Article ID 56, 18 pages. (2014) Zbl1350.49014MR3348625DOI10.1186/1687-1847-2014-56
  14. Coddington, E. A., Levinson, N., Theory of Ordinary Differential Equations, McGraw-Hill, New York (1955). (1955) Zbl0064.33002MR0069338
  15. Das, P. C., Sharma, R. R., 10.21136/CMJ.1972.101082, Czech. Math. J. 22 (1972), 145-158. (1972) Zbl0241.34070MR0304815DOI10.21136/CMJ.1972.101082
  16. Das, P. C., Sharma, R. R., 10.1016/0022-247X(80)90288-7, J. Math. Anal. Appl. 73 (1980), 423-433. (1980) Zbl0432.26008MR0563993DOI10.1016/0022-247X(80)90288-7
  17. J. Diestel, J. J. Uhl, Jr., 10.1090/surv/015, Mathematical Surveys 15. AMS, Providence (1977). (1977) Zbl0369.46039MR0453964DOI10.1090/surv/015
  18. Evans, L. C., Gariepy, R. F., 10.1201/b18333, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). (1992) Zbl0804.28001MR1158660DOI10.1201/b18333
  19. Filippov, A. F., 10.1007/978-94-015-7793-9, Mathematics and Its Applications: Soviet Series 18. Kluwer Academic, Dordrecht (1988). (1988) Zbl0664.34001MR1028776DOI10.1007/978-94-015-7793-9
  20. Folland, G. B., Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics. John Wiley & Sons, New York (1999). (1999) Zbl0924.28001MR1681462
  21. Hewitt, E., Stromberg, K., 10.1007/978-3-662-29794-0, Graduate Texts in Mathematics 25. Springer, New York (1975). (1975) Zbl0307.28001MR0367121DOI10.1007/978-3-662-29794-0
  22. Khamsi, M. A., Kozlowski, W. M., 10.1007/978-3-319-14051-3, Birkhäuser/Springer, Cham (2015). (2015) Zbl1318.47002MR3329163DOI10.1007/978-3-319-14051-3
  23. Kumar, S., Agarwal, R. P., 10.7153/dea-2020-12-20, Differ. Equ. Appl. 12 (2020), 313-322. (2020) Zbl1474.34407MR4155961DOI10.7153/dea-2020-12-20
  24. Kurtz, D. S., Swartz, C. W., 10.1142/5538, Series in Real Analysis 9. World Scientific, River Edge (2004). (2004) Zbl1072.26005MR2081182DOI10.1142/5538
  25. Kurzweil, J., 10.1142/4333, Series in Real Analysis 7. World Scientific, Singapore (2000). (2000) Zbl0954.28001MR1763305DOI10.1142/4333
  26. Kurzweil, J., 10.1142/5005, Series in Real Analysis 8. World Scientific, Singapore (2002). (2002) Zbl1018.26005MR1908744DOI10.1142/5005
  27. Kurzweil, J., 10.1142/7907, Series in Real Analysis 11. World Scientific, Hackensack (2012). (2012) Zbl1248.34001MR2906899DOI10.1142/7907
  28. Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., 10.1142/0906, Series in Modern Applied Mathematics 6. World Scientific, Singapore (1989). (1989) Zbl0719.34002MR1082551DOI10.1142/0906
  29. G. A. Leonov, H. Nijmeijer, A., A. Fradkov (eds.), 10.1142/7421, World Scientific Series on Nonlinear Science. Series B: Special Theme Issues and Proceedings 14. World Scientific, Hackensack (2010). (2010) Zbl1183.93003DOI10.1142/7421
  30. Meyer, C. D., Matrix Analysis and Applied Linear Algebra, SIAM, Philadelphia (2000). (2000) Zbl0962.15001MR1777382
  31. Moreau, J. J., 10.1007/978-3-7091-2624-0_1, Nonsmooth Mechanics and Applications International Centre for Mechanical Sciences. Springer, Wien (1988), 1-82. (1988) Zbl0703.73070DOI10.1007/978-3-7091-2624-0_1
  32. Pandit, S. G., Deo, S. G., 10.1007/BFb0067476, Lecture Notes in Mathematics 954. Springer, Berlin (1982). (1982) Zbl0539.34001MR0674119DOI10.1007/BFb0067476
  33. Persson, J., Regularization of nonlinear measure differential equations, Matematiche 44 (1989), 113-130. (1989) Zbl0715.34005MR1093156
  34. Saks, S., Theory of the Integral, Dover, New York (1964). (1964) Zbl1196.28001MR0167578
  35. Samoilenko, A. M., Perestyuk, N. A., 10.1142/2892, World Scientific Series on Nonlinear Science. Series A. 14. World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787DOI10.1142/2892
  36. Schmaedeke, W. W., 10.1137/0303019, J. Soc. Ind. Appl. Math., Ser. A, Control 3 (1965), 231-280. (1965) Zbl0161.29203MR0189870DOI10.1137/0303019
  37. Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations: Boundary Value Problems and Adjoints, Academia, Praha (1979). (1979) Zbl0417.45001MR0542283
  38. Slavík, A., 10.1016/j.jde.2015.02.013, J. Differ. Equations 259 (2015), 666-707. (2015) Zbl1319.34116MR3338315DOI10.1016/j.jde.2015.02.013
  39. Slyusarchuk, V. E., 10.1023/A:1005281717641, Ukr. Math. J. 52 (2000), 1094-1106. (2000) Zbl0976.34010MR1817324DOI10.1023/A:1005281717641
  40. Stamov, G. T., 10.1007/978-3-642-27546-3, Lecture Notes in Mathematics 2047. Springer, Berlin (2012). (2012) Zbl1255.34001MR2934087DOI10.1007/978-3-642-27546-3
  41. Stamova, I., Stamov, G., 10.1007/978-3-319-28061-5, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2016). (2016) Zbl1355.34004MR3496133DOI10.1007/978-3-319-28061-5
  42. Tanwani, A., Brogliato, B., Prieur, C., 10.1007/s00498-015-0140-7, Math. Control Signals Syst. 27 (2015), 245-275. (2015) Zbl1327.93330MR3343941DOI10.1007/s00498-015-0140-7
  43. Wouw, N. van de, Leine, R. I., 10.1109/CDC.2008.4738683, 47th IEEE Conference on Decision and Control IEEE, Philadelphia (2008), 2526-2532. (2008) DOI10.1109/CDC.2008.4738683
  44. Yablonski, A., 10.1016/j.na.2005.03.108, Nonlinear Anal., Theory Methods Appl., Ser. A 63 (2005), 171-197. (2005) Zbl1089.34006MR2165495DOI10.1016/j.na.2005.03.108
  45. Zavalishchin, S. T., Sesekin, A. N., 10.1007/978-94-015-8893-5, Mathematics and its Applications (Dordrecht) 394. Kluwer, Dordrecht (1997). (1997) Zbl0880.46031MR1441079DOI10.1007/978-94-015-8893-5
  46. Ziemer, W. P., 10.1007/978-1-4612-1015-3, Graduate Texts in Mathematics 120. Springer, Berlin (1989). (1989) Zbl0692.46022MR1014685DOI10.1007/978-1-4612-1015-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.