Discounted Markov decision processes with fuzzy costs

Salvador De-Jesús-Hernández; Hugo Cruz-Suárez; Raúl Montes-de-Oca

Kybernetika (2025)

  • Issue: 1, page 58-78
  • ISSN: 0023-5954

Abstract

top
This article concerns a class of discounted Markov decision processes on Borel spaces where, in contrast with the classical framework, the cost function C ˜ is a fuzzy function of a trapezoidal type, which is determined from a classical cost function C by applying an affine transformation with fuzzy coefficients. Under certain conditions ensuring that the classical (or standard) model with a cost function C has an optimal stationary policy f o with the optimal cost V o , it is shown that such a policy is also optimal for the fuzzy model with a cost function C ˜ , and that the optimal fuzzy value V ˜ o is obtained from V o via the same transformation used to go from C to C ˜ . And these results are obtained with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Besides, a fuzzy version of the classical linear-quadratic model without restrictions is presented.

How to cite

top

De-Jesús-Hernández, Salvador, Cruz-Suárez, Hugo, and Montes-de-Oca, Raúl. "Discounted Markov decision processes with fuzzy costs." Kybernetika (2025): 58-78. <http://eudml.org/doc/299935>.

@article{De2025,
abstract = {This article concerns a class of discounted Markov decision processes on Borel spaces where, in contrast with the classical framework, the cost function $\widetilde\{C\}$ is a fuzzy function of a trapezoidal type, which is determined from a classical cost function $C$ by applying an affine transformation with fuzzy coefficients. Under certain conditions ensuring that the classical (or standard) model with a cost function $C$ has an optimal stationary policy $f_\{o\}$ with the optimal cost $V_\{o\}$, it is shown that such a policy is also optimal for the fuzzy model with a cost function $\widetilde\{C\}$, and that the optimal fuzzy value $\tilde\{V\}_\{o\}$ is obtained from $V_\{o\}$ via the same transformation used to go from $C$ to $\widetilde\{C\}$. And these results are obtained with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Besides, a fuzzy version of the classical linear-quadratic model without restrictions is presented.},
author = {De-Jesús-Hernández, Salvador, Cruz-Suárez, Hugo, Montes-de-Oca, Raúl},
journal = {Kybernetika},
keywords = {discounted Markov decision processes; trapezoidal fuzzy costs; max-order; average ranking},
language = {eng},
number = {1},
pages = {58-78},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Discounted Markov decision processes with fuzzy costs},
url = {http://eudml.org/doc/299935},
year = {2025},
}

TY - JOUR
AU - De-Jesús-Hernández, Salvador
AU - Cruz-Suárez, Hugo
AU - Montes-de-Oca, Raúl
TI - Discounted Markov decision processes with fuzzy costs
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 1
SP - 58
EP - 78
AB - This article concerns a class of discounted Markov decision processes on Borel spaces where, in contrast with the classical framework, the cost function $\widetilde{C}$ is a fuzzy function of a trapezoidal type, which is determined from a classical cost function $C$ by applying an affine transformation with fuzzy coefficients. Under certain conditions ensuring that the classical (or standard) model with a cost function $C$ has an optimal stationary policy $f_{o}$ with the optimal cost $V_{o}$, it is shown that such a policy is also optimal for the fuzzy model with a cost function $\widetilde{C}$, and that the optimal fuzzy value $\tilde{V}_{o}$ is obtained from $V_{o}$ via the same transformation used to go from $C$ to $\widetilde{C}$. And these results are obtained with respect to two cases: the max-order of the fuzzy numbers and the average ranking order of the trapezoidal fuzzy numbers. Besides, a fuzzy version of the classical linear-quadratic model without restrictions is presented.
LA - eng
KW - discounted Markov decision processes; trapezoidal fuzzy costs; max-order; average ranking
UR - http://eudml.org/doc/299935
ER -

References

top
  1. Aubin, J. P., Frankowska, H., Set-Valued Analysis., Birkhäuser, Boston 2009. MR2458436
  2. Bertsekas, D., Dynamic programming and optimal control: Volume I., Athena Sci. (2012). MR3642732
  3. Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R., Finite-horizon and infinite-horizon Markov decision processes with trapezoidal fuzzy discounted rewards., Commun. Comput. Inf. Sci., Springer, Cham 1623 (2022), 171-192. MR4487360
  4. Carrero-Vera, K., Cruz-Suárez, H., Montes-de-Oca, R., , Kybernetika 58 (2022), 2, 180-199. MR4467492DOI
  5. Cruz-Suárez, H., Montes-de-Oca, R., , Math. Oper. Res. 67 (2008), 299-321. MR2390061DOI
  6. Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R. I., , Kybernetika 59 (2023), 1,160-178. MR4567846DOI
  7. Cruz-Suárez, H., Montes-de-Oca, R., Ortega-Gutiérrez, R., , Fuzzy Inf. Engrg. 15 (2023), 3, 274-290. DOI
  8. Andrés-Sánchez, J. de, , Expert Syst. Appl. 223 (2023), 119868. DOI
  9. Diamond, P., Kloeden, P., Metric Spaces of Fuzzy Sets: Theory and Applications., World Scientific, Singapore 1994. MR1337027
  10. Figueroa-García, J. C., Hernández, G., Franco, C., , Oper. Res. Perspect. 9 (2022), 100247. MR4471476DOI
  11. Furukawa, N., , Optimization 40 (1997), 171-192. MR1620380DOI
  12. Hernández-Lerma, O., Lasserre, J. B., Discrete-Time Markov Control Processes: Basic Optimality Criteria., Springer-Verlag, New York, 1996. Zbl0840.93001MR1363487
  13. Kambalimath, S., Deka, P. C., , Appl. Water Sci. 10 (2020), 8, 1-14. DOI
  14. Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y., , Eur. J. Oper. Res. 92 (1996), 3, 649-662. MR1328908DOI
  15. Kurano, M., Yasuda, M., Nakagami, J., Yoshida, Y., Markov decision processes with fuzzy rewards., J. Nonlinear Convex Anal. 4 (1996), 1, 105-116. MR1986973
  16. Kurano, M., Hosaka, M., Song, J., Huang, Y., , J. Appl. Prob. 35 (1998), 3, 293-302. MR1641785DOI
  17. López-Díaz, M., Ralescu, D. A., , Comput. Statist. Data Anal. 51 (2006), 109-114. MR2297590DOI
  18. Puri, M. L., Ralescu, D. A., Fuzzy random variable., J. Math. Anal. Appl. 114 (1986), 402-422. MR0833596
  19. Rani, D., Gulati, T. R., , J. Transp. Secur. 7 (2014), 3, 277-287. DOI
  20. Rani, D., Gulati, T. R., Kumar, A., , Sadhana 39 (2014), 3, 573-581. MR3225832DOI
  21. Rezvani, S., Molani, M., Representation of trapezoidal fuzzy numbers with shape function., Ann. Fuzzy Math. Inform. 8 (2014), 89-112. MR3214770
  22. Semmouri, A., Jourhmane, M., Belhallaj, Z., , Ann. Oper. Res. 295 (2020), 769-786. MR4181708DOI
  23. Syropoulos, A., Grammenos, T., A Modern Introduction to Fuzzy Mathematics., Wiley, New Jersey 2020. 
  24. Zadeh, L., , Inform. Control 8 (1965), 338-353. Zbl0942.00007MR0219427DOI
  25. Zhou, W., Lou, D., Xu, Z., , Int. J. Syst. Sci. 53 (2022), 9, 1958-1982. MR4446001DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.