Induced mappings on hyperspaces F n K ( X )

Enrique Castañeda-Alvarado; Roberto C. Mondragón-Alvarez; Norberto Ordoñez

Commentationes Mathematicae Universitatis Carolinae (2024)

  • Issue: 1, page 79-97
  • ISSN: 0010-2628

Abstract

top
Given a metric continuum X and a positive integer n , F n ( X ) denotes the hyperspace of all nonempty subsets of X with at most n points endowed with the Hausdorff metric. For K F n ( X ) , F n ( K , X ) denotes the set of elements of F n ( X ) containing K and F n K ( X ) denotes the quotient space obtained from F n ( X ) by shrinking F n ( K , X ) to one point set. Given a map f : X Y between continua, f n : F n ( X ) F n ( Y ) denotes the induced map defined by f n ( A ) = f ( A ) . Let K F n ( X ) , we shall consider the induced map in the natural way f n , K : F n K ( X ) F n f ( K ) ( Y ) . In this paper we consider the maps f , f n , f n , K for some K F n ( X ) and f n , K for each K F n ( X ) ; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.

How to cite

top

Castañeda-Alvarado, Enrique, Mondragón-Alvarez, Roberto C., and Ordoñez, Norberto. "Induced mappings on hyperspaces $F_n^K(X)$." Commentationes Mathematicae Universitatis Carolinae (2024): 79-97. <http://eudml.org/doc/299940>.

@article{Castañeda2024,
abstract = {Given a metric continuum $X$ and a positive integer $n$, $F_\{n\}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_\{n\}(X)$, $F_\{n\}(K,X)$ denotes the set of elements of $F_\{n\}(X)$ containing $K$ and $F_\{n\}^K(X)$ denotes the quotient space obtained from $F_\{n\}(X)$ by shrinking $F_\{n\}(K,X)$ to one point set. Given a map $f\colon X\rightarrow Y$ between continua, $f_\{n\}\colon F_\{n\}(X)\rightarrow F_\{n\}(Y)$ denotes the induced map defined by $f_\{n\}(A)=f(A)$. Let $K\in F_\{n\}(X)$, we shall consider the induced map in the natural way $f_\{n,K\}\colon F_\{n\}^K(X)\rightarrow F_\{n\}^\{f(K)\}(Y)$. In this paper we consider the maps $f$, $f_\{n\}$, $f_\{n,K\}$ for some $K\in F_n(X)$ and $f_\{n,K\}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.},
author = {Castañeda-Alvarado, Enrique, Mondragón-Alvarez, Roberto C., Ordoñez, Norberto},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {continuum; symmetric product; quotient space; hyperspace; induced mapping},
language = {eng},
number = {1},
pages = {79-97},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Induced mappings on hyperspaces $F_n^K(X)$},
url = {http://eudml.org/doc/299940},
year = {2024},
}

TY - JOUR
AU - Castañeda-Alvarado, Enrique
AU - Mondragón-Alvarez, Roberto C.
AU - Ordoñez, Norberto
TI - Induced mappings on hyperspaces $F_n^K(X)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 79
EP - 97
AB - Given a metric continuum $X$ and a positive integer $n$, $F_{n}(X)$ denotes the hyperspace of all nonempty subsets of $X$ with at most $n$ points endowed with the Hausdorff metric. For $K\in F_{n}(X)$, $F_{n}(K,X)$ denotes the set of elements of $F_{n}(X)$ containing $K$ and $F_{n}^K(X)$ denotes the quotient space obtained from $F_{n}(X)$ by shrinking $F_{n}(K,X)$ to one point set. Given a map $f\colon X\rightarrow Y$ between continua, $f_{n}\colon F_{n}(X)\rightarrow F_{n}(Y)$ denotes the induced map defined by $f_{n}(A)=f(A)$. Let $K\in F_{n}(X)$, we shall consider the induced map in the natural way $f_{n,K}\colon F_{n}^K(X)\rightarrow F_{n}^{f(K)}(Y)$. In this paper we consider the maps $f$, $f_{n}$, $f_{n,K}$ for some $K\in F_n(X)$ and $f_{n,K}$ for each $K\in F_n(X)$; and we study relationship between them for the following classes of maps: homeomorphisms, monotone, confluent, light and open maps.
LA - eng
KW - continuum; symmetric product; quotient space; hyperspace; induced mapping
UR - http://eudml.org/doc/299940
ER -

References

top
  1. Barragán F., 10.1016/j.topol.2011.04.006, Topology Appl. 158 (2011), no. 10, 1192–1205. MR2796121DOI10.1016/j.topol.2011.04.006
  2. Castañeda-Alvarado E., Mondragón R. C., Ordoñez N., Orozco-Zitli F., The hyperspace F n K ( X ) , Bull. Iranian Math. Soc. 47 (2021), no. 3, 659–678. MR4249170
  3. Dugundji J., Topology, Allyn and Bacon, Boston, 1966. Zbl0397.54003MR0193606
  4. Higuera G., Illanes A., Induced mappings on symmetric products, Topology Proc. 37 (2011), 367–401. MR2740654
  5. Hosokawa H., Induced mappings between hyperspaces II, Bull. Tokyo Gakugei Univ. (4) 44 (1992), 1–7. MR1193338
  6. Kuratowski K., Topology, Academic Press, New York, London, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. Zbl0849.01044
  7. Macías S., Aposyndetic properties of symmetric products of continua, Topology Proc. 22 (1997), 281–296. MR1657883
  8. Macías S., Topics on Continua, Pure Appl. Math. Ser., 275, Chapman and Hall/CRC, Taylor and Francis Group, Boca Raton, 2005. MR2147759
  9. Maćkowiak T., Continuous Mappings on Continua, Dissertationes Math., Rozprawy Mat., 158, 1979. MR0522934
  10. Nadler S. B., Jr., Hyperspaces of Sets, A Text with Research Questions, Monographs and Texbooks in Pure and Applied Mathematics, 49, Marcel Dekker, New York-Basel, 1978. Zbl1125.54001MR0500811

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.