A new characterization of projective special unitary group PSU ( 5 , q )

Behnam Ebrahimzadeh

Commentationes Mathematicae Universitatis Carolinae (2024)

  • Issue: 1, page 1-12
  • ISSN: 0010-2628

Abstract

top
Projective special unitary groups PSU ( 5 , q ) , where q 4 - q 3 + q 2 - q + 1 ( 5 , q + 1 ) is a prime, is uniquely determined by its order and the size of one conjugacy class.

How to cite

top

Ebrahimzadeh, Behnam. "A new characterization of projective special unitary group PSU$(5, q)$." Commentationes Mathematicae Universitatis Carolinae (2024): 1-12. <http://eudml.org/doc/299943>.

@article{Ebrahimzadeh2024,
abstract = {Projective special unitary groups $\{\rm PSU\}(5,q)$, where \[ \frac\{q^4-q^3+q^2-q+1\}\{(5,q+1)\} \] is a prime, is uniquely determined by its order and the size of one conjugacy class.},
author = {Ebrahimzadeh, Behnam},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {element order; conjugacy class; prime graph; projective special unitary group},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A new characterization of projective special unitary group PSU$(5, q)$},
url = {http://eudml.org/doc/299943},
year = {2024},
}

TY - JOUR
AU - Ebrahimzadeh, Behnam
TI - A new characterization of projective special unitary group PSU$(5, q)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 1
EP - 12
AB - Projective special unitary groups ${\rm PSU}(5,q)$, where \[ \frac{q^4-q^3+q^2-q+1}{(5,q+1)} \] is a prime, is uniquely determined by its order and the size of one conjugacy class.
LA - eng
KW - element order; conjugacy class; prime graph; projective special unitary group
UR - http://eudml.org/doc/299943
ER -

References

top
  1. Amiri S. S. S., Asboei A. K., Characterization of some finite groups by their order and by the length of a conjugacy class, Sibirsk. Mat. Zh. 57 (2016), no. 2, 241–246 (in Russian); translation in Sib. Math. J. 57 (2016), no. 2, 185–189. MR3510189
  2. Asboei A. K., Characterization of PSL ( 5 , q ) by its order and one conjugacy class size, Iran. J. of Math. Sci. Inform. 15 (2020), no. 1, 35–40. MR4108746
  3. Asboei A. K., Darafsheh M. R., Mohammadyari R., 10.14492/hokmj/1520928059, Hokkaido Math. J. 47 (2018), no. 1, 25–32. MR3773724DOI10.14492/hokmj/1520928059
  4. Asboei A. K., Mohammadyari R., 10.1007/s10587-016-0239-0, Czechoslovak Math. J. 66(141) (2016), no. 1, 63–70. MR3483222DOI10.1007/s10587-016-0239-0
  5. Asboei A. K., Mohammadyari R., Recognizing alternating groups by their order and one conjugacy class length, J. Algebra. Appl. 15 (2016), no. 2, 1650021, 7 pages. MR3405720
  6. Asboei A. K., Mohammadyari R., Rahimi-Esbo M., New characterization of some linear groups, Int. J. Industrial Mathematics 8 (2016), no. 2, Article ID IJIM-00714, 6 pages. 
  7. Chen G. Y., On Frobenius and 2 -Frobenius group, J. Southwest China Norm. Univ. 20 (1995), no. 5, 485–487 (Chinese). 
  8. Chen Y., Chen G., Recognizing L 2 ( p ) by its order and one special conjugacy class size, J. Inequal. Appl. 2012 (2012), 2012:310, 10 pages. MR3027693
  9. Chen Y., Chen G., Recognition of A 10 and L 4 ( 4 ) by two special conjugacy class sizes, Ital. J. Pure Appl. Math. 29 (2012), 387–394. MR3009613
  10. Darafsheh M. R., 10.1007/s10114-007-6143-7, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 7, 1117–1126. MR2420882DOI10.1007/s10114-007-6143-7
  11. Gorenstein D., Finite Groups, Chelsea Publishing Co., New York, 1980. Zbl0695.20014MR0569209
  12. Iranmanesh A., Alavi S. H., 10.1017/S0004972700020256, Bull. Austral. Math. Soc. 65 (2002), 211–222. MR1898535DOI10.1017/S0004972700020256
  13. Kantor W. M., Seress Á., 10.1016/j.jalgebra.2009.05.004, J. Algebra 322 (2009), no. 3, 802–832. MR2531224DOI10.1016/j.jalgebra.2009.05.004
  14. Mazurov V. D., Khukhro E. I., Unsolved Problems in Group Theory, The Kourovka Notebook, 16 ed., Inst. Mat. Sibirsk. Otdel. Akad., Novosibirsk, 2006. MR2263886
  15. Wall E. G., 10.1017/S1446788700027622, J. Aust. Math. Soc. 3 (1963), no. 1, 1–62. MR0150210DOI10.1017/S1446788700027622
  16. Williams J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), no. 2, 487–513. Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
  17. Zavarnitsine A. V., Recognition of the simple groups L 3 ( q ) by element orders, J. Group Theory 7 (2004), no. 1, 81–97. MR2030231

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.