A new characterization of projective special unitary group PSU
Commentationes Mathematicae Universitatis Carolinae (2024)
- Issue: 1, page 1-12
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topEbrahimzadeh, Behnam. "A new characterization of projective special unitary group PSU$(5, q)$." Commentationes Mathematicae Universitatis Carolinae (2024): 1-12. <http://eudml.org/doc/299943>.
@article{Ebrahimzadeh2024,
abstract = {Projective special unitary groups $\{\rm PSU\}(5,q)$, where \[ \frac\{q^4-q^3+q^2-q+1\}\{(5,q+1)\} \]
is a prime, is uniquely determined by its order and the size of one conjugacy class.},
author = {Ebrahimzadeh, Behnam},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {element order; conjugacy class; prime graph; projective special unitary group},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A new characterization of projective special unitary group PSU$(5, q)$},
url = {http://eudml.org/doc/299943},
year = {2024},
}
TY - JOUR
AU - Ebrahimzadeh, Behnam
TI - A new characterization of projective special unitary group PSU$(5, q)$
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 1
EP - 12
AB - Projective special unitary groups ${\rm PSU}(5,q)$, where \[ \frac{q^4-q^3+q^2-q+1}{(5,q+1)} \]
is a prime, is uniquely determined by its order and the size of one conjugacy class.
LA - eng
KW - element order; conjugacy class; prime graph; projective special unitary group
UR - http://eudml.org/doc/299943
ER -
References
top- Amiri S. S. S., Asboei A. K., Characterization of some finite groups by their order and by the length of a conjugacy class, Sibirsk. Mat. Zh. 57 (2016), no. 2, 241–246 (in Russian); translation in Sib. Math. J. 57 (2016), no. 2, 185–189. MR3510189
- Asboei A. K., Characterization of PSL by its order and one conjugacy class size, Iran. J. of Math. Sci. Inform. 15 (2020), no. 1, 35–40. MR4108746
- Asboei A. K., Darafsheh M. R., Mohammadyari R., 10.14492/hokmj/1520928059, Hokkaido Math. J. 47 (2018), no. 1, 25–32. MR3773724DOI10.14492/hokmj/1520928059
- Asboei A. K., Mohammadyari R., 10.1007/s10587-016-0239-0, Czechoslovak Math. J. 66(141) (2016), no. 1, 63–70. MR3483222DOI10.1007/s10587-016-0239-0
- Asboei A. K., Mohammadyari R., Recognizing alternating groups by their order and one conjugacy class length, J. Algebra. Appl. 15 (2016), no. 2, 1650021, 7 pages. MR3405720
- Asboei A. K., Mohammadyari R., Rahimi-Esbo M., New characterization of some linear groups, Int. J. Industrial Mathematics 8 (2016), no. 2, Article ID IJIM-00714, 6 pages.
- Chen G. Y., On Frobenius and -Frobenius group, J. Southwest China Norm. Univ. 20 (1995), no. 5, 485–487 (Chinese).
- Chen Y., Chen G., Recognizing by its order and one special conjugacy class size, J. Inequal. Appl. 2012 (2012), 2012:310, 10 pages. MR3027693
- Chen Y., Chen G., Recognition of and by two special conjugacy class sizes, Ital. J. Pure Appl. Math. 29 (2012), 387–394. MR3009613
- Darafsheh M. R., 10.1007/s10114-007-6143-7, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 7, 1117–1126. MR2420882DOI10.1007/s10114-007-6143-7
- Gorenstein D., Finite Groups, Chelsea Publishing Co., New York, 1980. Zbl0695.20014MR0569209
- Iranmanesh A., Alavi S. H., 10.1017/S0004972700020256, Bull. Austral. Math. Soc. 65 (2002), 211–222. MR1898535DOI10.1017/S0004972700020256
- Kantor W. M., Seress Á., 10.1016/j.jalgebra.2009.05.004, J. Algebra 322 (2009), no. 3, 802–832. MR2531224DOI10.1016/j.jalgebra.2009.05.004
- Mazurov V. D., Khukhro E. I., Unsolved Problems in Group Theory, The Kourovka Notebook, 16 ed., Inst. Mat. Sibirsk. Otdel. Akad., Novosibirsk, 2006. MR2263886
- Wall E. G., 10.1017/S1446788700027622, J. Aust. Math. Soc. 3 (1963), no. 1, 1–62. MR0150210DOI10.1017/S1446788700027622
- Williams J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), no. 2, 487–513. Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
- Zavarnitsine A. V., Recognition of the simple groups by element orders, J. Group Theory 7 (2004), no. 1, 81–97. MR2030231
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.