A note on nonseparable Lipschitz-free spaces
Ramón J. Aliaga; Guillaume Grelier; Antonín Procházka
Commentationes Mathematicae Universitatis Carolinae (2024)
- Issue: 1, page 31-44
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAliaga, Ramón J., Grelier, Guillaume, and Procházka, Antonín. "A note on nonseparable Lipschitz-free spaces." Commentationes Mathematicae Universitatis Carolinae (2024): 31-44. <http://eudml.org/doc/299953>.
@article{Aliaga2024,
abstract = {We prove that several classical Banach space properties are equivalent to separability for the class of Lipschitz-free spaces, including Corson’s property ($\mathcal \{C\}$), Talponen’s countable separation property, or being a Gâteaux differentiability space. On the other hand, we single out more general properties where this equivalence fails. In particular, the question whether the duals of nonseparable Lipschitz-free spaces have a weak$^*$ sequentially compact ball is undecidable in ZFC. Finally, we provide an example of a nonseparable dual Lipschitz-free space that fails the Radon–Nikodým property.},
author = {Aliaga, Ramón J., Grelier, Guillaume, Procházka, Antonín},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lipschitz-free space; nonseparable Banach space; sequentially compact; Radon--Nikodým property},
language = {eng},
number = {1},
pages = {31-44},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on nonseparable Lipschitz-free spaces},
url = {http://eudml.org/doc/299953},
year = {2024},
}
TY - JOUR
AU - Aliaga, Ramón J.
AU - Grelier, Guillaume
AU - Procházka, Antonín
TI - A note on nonseparable Lipschitz-free spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 31
EP - 44
AB - We prove that several classical Banach space properties are equivalent to separability for the class of Lipschitz-free spaces, including Corson’s property ($\mathcal {C}$), Talponen’s countable separation property, or being a Gâteaux differentiability space. On the other hand, we single out more general properties where this equivalence fails. In particular, the question whether the duals of nonseparable Lipschitz-free spaces have a weak$^*$ sequentially compact ball is undecidable in ZFC. Finally, we provide an example of a nonseparable dual Lipschitz-free space that fails the Radon–Nikodým property.
LA - eng
KW - Lipschitz-free space; nonseparable Banach space; sequentially compact; Radon--Nikodým property
UR - http://eudml.org/doc/299953
ER -
References
top- Albiac F., Kalton N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, Cham, 2016. Zbl1094.46002MR3526021
- Aliaga R. J., Gartland C., Petitjean C., Procházka A., Purely -unrectifiable metric spaces and locally flat Lipschitz functions, Trans. Amer. Math. Soc. 375 (2022), no. 5, 3529–3567. MR4402669
- Aliaga R. J., Pernecká E., 10.4171/rmi/1191, Rev. Mat. Iberoam. 36 (2020), no. 7, 2073–2089. MR4163992DOI10.4171/rmi/1191
- Aliaga R. J., Pernecká E., Petitjean C., Procházka A., 10.1016/j.jmaa.2020.124128, J. Math. Anal. Appl. 489 (2020), no. 1, 124128, 14 pages. MR4083124DOI10.1016/j.jmaa.2020.124128
- Bogachev V. I., Measure Theory, Springer, Berlin, 2007. MR2267655
- Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. MR2759829
- Dancer E. N., Sims B., 10.1017/S0004972700010935, Bull. Aust. Math. Soc. 20 (1979), no. 2, 253–257. MR0557235DOI10.1017/S0004972700010935
- Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, Harlow; John Wiley and Sons, New York, 1993. Zbl0782.46019MR1211634
- Dow A., Shelah S., 10.1016/j.indag.2017.01.010, Indag. Math. (N.S.) 29 (2018), no. 1, 382–395. MR3739621DOI10.1016/j.indag.2017.01.010
- van Douwen E. K., The integers and topology, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167. Zbl0561.54004MR0776622
- Fabian M. J., Gâteaux Differentiability of Convex Functions and Topology: Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley and Sons, New York, 1997. Zbl0883.46011MR1461271
- Fabian M., Habala P., Hájek P., Montesinos V., Zizler V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer, New York, 2011. MR2766381
- García-Lirola L., Petitjean C., Procházka A., 10.1007/s40840-023-01467-5, Bull. Malays. Math. Sci. Soc. 46 (2023), no. 2, Paper No. 68, 31 pages. MR4542688DOI10.1007/s40840-023-01467-5
- García-Lirola L., Petitjean C., Procházka A., Rueda Zoca A., Extremal structure and duality of Lipschitz free spaces, Mediterr. J. Math. (2018), no. 9, Paper No. 69, 23 pages. MR3778926
- Hájek P., Novotný M., 10.36045/bbms/1503453711, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 283–304. MR3694004DOI10.36045/bbms/1503453711
- Johnson W. B., Lindenstrauss J., 10.1007/BF02882239, Israel J. Math. 17 (1974), 219–230. MR0417760DOI10.1007/BF02882239
- Kalton N. J., Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217. MR2068975
- Kalton N. J., 10.4064/fm212-1-4, Fund. Math. 212 (2011), no. 11, 53–69. MR2771588DOI10.4064/fm212-1-4
- Lacey H. E., The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, 208, Springer, New Yourk, 1974. Zbl0285.46024MR0493279
- Moors W. B., Somasundaram S., 10.1090/S0002-9939-06-08402-4, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2745–2754. MR2213755DOI10.1090/S0002-9939-06-08402-4
- Phelps R. R., Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, 1364, Springer, Berlin, 1993. Zbl0921.46039MR1238715
- Raja M., 10.1016/j.jmaa.2016.02.057, J. Math. Anal. Appl. 439 (2016), no. 1, 183–196. MR3474357DOI10.1016/j.jmaa.2016.02.057
- Rudin W., Real and Complex Analysis, McGraw-Hill Bool Co., New York, 1987. Zbl1038.00002MR0924157
- Talponen J., 10.1016/j.topol.2008.11.009, Topology Appl. 156 (2009), no. 5, 915–925. MR2498924DOI10.1016/j.topol.2008.11.009
- Weaver N., 10.2140/pjm.1996.173.283, Pacific J. Math. 173 (1996), no. 1, 283–293. MR1387803DOI10.2140/pjm.1996.173.283
- Weaver N., Lipschitz Algebras, World Scientific Publishing Co., Hackensack, 2018. MR3792558
- Zizler V., Nonseparable Banach spaces, in Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, pages 1743–1816. Zbl1041.46009MR1999608
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.