A note on nonseparable Lipschitz-free spaces

Ramón J. Aliaga; Guillaume Grelier; Antonín Procházka

Commentationes Mathematicae Universitatis Carolinae (2024)

  • Issue: 1, page 31-44
  • ISSN: 0010-2628

Abstract

top
We prove that several classical Banach space properties are equivalent to separability for the class of Lipschitz-free spaces, including Corson’s property ( 𝒞 ), Talponen’s countable separation property, or being a Gâteaux differentiability space. On the other hand, we single out more general properties where this equivalence fails. In particular, the question whether the duals of nonseparable Lipschitz-free spaces have a weak * sequentially compact ball is undecidable in ZFC. Finally, we provide an example of a nonseparable dual Lipschitz-free space that fails the Radon–Nikodým property.

How to cite

top

Aliaga, Ramón J., Grelier, Guillaume, and Procházka, Antonín. "A note on nonseparable Lipschitz-free spaces." Commentationes Mathematicae Universitatis Carolinae (2024): 31-44. <http://eudml.org/doc/299953>.

@article{Aliaga2024,
abstract = {We prove that several classical Banach space properties are equivalent to separability for the class of Lipschitz-free spaces, including Corson’s property ($\mathcal \{C\}$), Talponen’s countable separation property, or being a Gâteaux differentiability space. On the other hand, we single out more general properties where this equivalence fails. In particular, the question whether the duals of nonseparable Lipschitz-free spaces have a weak$^*$ sequentially compact ball is undecidable in ZFC. Finally, we provide an example of a nonseparable dual Lipschitz-free space that fails the Radon–Nikodým property.},
author = {Aliaga, Ramón J., Grelier, Guillaume, Procházka, Antonín},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Lipschitz-free space; nonseparable Banach space; sequentially compact; Radon--Nikodým property},
language = {eng},
number = {1},
pages = {31-44},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on nonseparable Lipschitz-free spaces},
url = {http://eudml.org/doc/299953},
year = {2024},
}

TY - JOUR
AU - Aliaga, Ramón J.
AU - Grelier, Guillaume
AU - Procházka, Antonín
TI - A note on nonseparable Lipschitz-free spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2024
PB - Charles University in Prague, Faculty of Mathematics and Physics
IS - 1
SP - 31
EP - 44
AB - We prove that several classical Banach space properties are equivalent to separability for the class of Lipschitz-free spaces, including Corson’s property ($\mathcal {C}$), Talponen’s countable separation property, or being a Gâteaux differentiability space. On the other hand, we single out more general properties where this equivalence fails. In particular, the question whether the duals of nonseparable Lipschitz-free spaces have a weak$^*$ sequentially compact ball is undecidable in ZFC. Finally, we provide an example of a nonseparable dual Lipschitz-free space that fails the Radon–Nikodým property.
LA - eng
KW - Lipschitz-free space; nonseparable Banach space; sequentially compact; Radon--Nikodým property
UR - http://eudml.org/doc/299953
ER -

References

top
  1. Albiac F., Kalton N. J., Topics in Banach Space Theory, Graduate Texts in Mathematics, 233, Springer, Cham, 2016. Zbl1094.46002MR3526021
  2. Aliaga R. J., Gartland C., Petitjean C., Procházka A., Purely 1 -unrectifiable metric spaces and locally flat Lipschitz functions, Trans. Amer. Math. Soc. 375 (2022), no. 5, 3529–3567. MR4402669
  3. Aliaga R. J., Pernecká E., 10.4171/rmi/1191, Rev. Mat. Iberoam. 36 (2020), no. 7, 2073–2089. MR4163992DOI10.4171/rmi/1191
  4. Aliaga R. J., Pernecká E., Petitjean C., Procházka A., 10.1016/j.jmaa.2020.124128, J. Math. Anal. Appl. 489 (2020), no. 1, 124128, 14 pages. MR4083124DOI10.1016/j.jmaa.2020.124128
  5. Bogachev V. I., Measure Theory, Springer, Berlin, 2007. MR2267655
  6. Brezis H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011. MR2759829
  7. Dancer E. N., Sims B., 10.1017/S0004972700010935, Bull. Aust. Math. Soc. 20 (1979), no. 2, 253–257. MR0557235DOI10.1017/S0004972700010935
  8. Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific and Technical, Harlow; John Wiley and Sons, New York, 1993. Zbl0782.46019MR1211634
  9. Dow A., Shelah S., 10.1016/j.indag.2017.01.010, Indag. Math. (N.S.) 29 (2018), no. 1, 382–395. MR3739621DOI10.1016/j.indag.2017.01.010
  10. van Douwen E. K., The integers and topology, in Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pages 111–167. Zbl0561.54004MR0776622
  11. Fabian M. J., Gâteaux Differentiability of Convex Functions and Topology: Weak Asplund Spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley and Sons, New York, 1997. Zbl0883.46011MR1461271
  12. Fabian M., Habala P., Hájek P., Montesinos V., Zizler V., Banach Space Theory. The Basis for Linear and Nonlinear Analysis, CMS Books in Mathematics, Springer, New York, 2011. MR2766381
  13. García-Lirola L., Petitjean C., Procházka A., 10.1007/s40840-023-01467-5, Bull. Malays. Math. Sci. Soc. 46 (2023), no. 2, Paper No. 68, 31 pages. MR4542688DOI10.1007/s40840-023-01467-5
  14. García-Lirola L., Petitjean C., Procházka A., Rueda Zoca A., Extremal structure and duality of Lipschitz free spaces, Mediterr. J. Math. (2018), no. 9, Paper No. 69, 23 pages. MR3778926
  15. Hájek P., Novotný M., 10.36045/bbms/1503453711, Bull. Belg. Math. Soc. Simon Stevin 24 (2017), no. 2, 283–304. MR3694004DOI10.36045/bbms/1503453711
  16. Johnson W. B., Lindenstrauss J., 10.1007/BF02882239, Israel J. Math. 17 (1974), 219–230. MR0417760DOI10.1007/BF02882239
  17. Kalton N. J., Spaces of Lipschitz and Hölder functions and their applications, Collect. Math. 55 (2004), no. 2, 171–217. MR2068975
  18. Kalton N. J., 10.4064/fm212-1-4, Fund. Math. 212 (2011), no. 11, 53–69. MR2771588DOI10.4064/fm212-1-4
  19. Lacey H. E., The Isometric Theory of Classical Banach Spaces, Die Grundlehren der mathematischen Wissenschaften, 208, Springer, New Yourk, 1974. Zbl0285.46024MR0493279
  20. Moors W. B., Somasundaram S., 10.1090/S0002-9939-06-08402-4, Proc. Amer. Math. Soc. 134 (2006), no. 9, 2745–2754. MR2213755DOI10.1090/S0002-9939-06-08402-4
  21. Phelps R. R., Convex Functions, Monotone Operators and Differentiability, Lecture Notes in Mathematics, 1364, Springer, Berlin, 1993. Zbl0921.46039MR1238715
  22. Raja M., 10.1016/j.jmaa.2016.02.057, J. Math. Anal. Appl. 439 (2016), no. 1, 183–196. MR3474357DOI10.1016/j.jmaa.2016.02.057
  23. Rudin W., Real and Complex Analysis, McGraw-Hill Bool Co., New York, 1987. Zbl1038.00002MR0924157
  24. Talponen J., 10.1016/j.topol.2008.11.009, Topology Appl. 156 (2009), no. 5, 915–925. MR2498924DOI10.1016/j.topol.2008.11.009
  25. Weaver N., 10.2140/pjm.1996.173.283, Pacific J. Math. 173 (1996), no. 1, 283–293. MR1387803DOI10.2140/pjm.1996.173.283
  26. Weaver N., Lipschitz Algebras, World Scientific Publishing Co., Hackensack, 2018. MR3792558
  27. Zizler V., Nonseparable Banach spaces, in Handbook of the Geometry of Banach Spaces, 2, North-Holland, Amsterdam, 2003, pages 1743–1816. Zbl1041.46009MR1999608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.