Local accuracy in finite element analysis using curved isoparametric elements

Pranjal Saxena; Chandra Shekhar Upadhyay

Applications of Mathematics (2025)

  • Issue: 2, page 257-292
  • ISSN: 0862-7940

Abstract

top
The finite element method (FEM) is popularly used for numerically approximating PDE(s) over complicated domains due to its rich mathematical background, versatility, and ease of implementation. In this article, we investigate one of its important features, i.e., the approximation of PDE(s) over nonpolygonal Lipschitz domains by higher-order simplicial elements in 2D and 3D. This important issue is not well understood and often ignored by engineers due to its mathematical complexity, i.e., the FEM approximation of curved domains results in inexact boundary conditions, which is a variational crime. This article explores the role of approximation at curved boundaries. Further, the effect of incompleteness of the approximation space also contributes to the error induced in the curved elements. A simple benchmark test for errors is proposed. Tests are conducted for subparametric and isoparametric approximations. Comparison with isogeometric analysis (IGA) is also presented to highlight the basic differences and advantages of isoparametric elements.

How to cite

top

Saxena, Pranjal, and Upadhyay, Chandra Shekhar. "Local accuracy in finite element analysis using curved isoparametric elements." Applications of Mathematics (2025): 257-292. <http://eudml.org/doc/299974>.

@article{Saxena2025,
abstract = {The finite element method (FEM) is popularly used for numerically approximating PDE(s) over complicated domains due to its rich mathematical background, versatility, and ease of implementation. In this article, we investigate one of its important features, i.e., the approximation of PDE(s) over nonpolygonal Lipschitz domains by higher-order simplicial elements in 2D and 3D. This important issue is not well understood and often ignored by engineers due to its mathematical complexity, i.e., the FEM approximation of curved domains results in inexact boundary conditions, which is a variational crime. This article explores the role of approximation at curved boundaries. Further, the effect of incompleteness of the approximation space also contributes to the error induced in the curved elements. A simple benchmark test for errors is proposed. Tests are conducted for subparametric and isoparametric approximations. Comparison with isogeometric analysis (IGA) is also presented to highlight the basic differences and advantages of isoparametric elements.},
author = {Saxena, Pranjal, Upadhyay, Chandra Shekhar},
journal = {Applications of Mathematics},
keywords = {curved boundary; error estimate; isoparametric FEM; isogeometric analysis; patch test; local convergence},
language = {eng},
number = {2},
pages = {257-292},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local accuracy in finite element analysis using curved isoparametric elements},
url = {http://eudml.org/doc/299974},
year = {2025},
}

TY - JOUR
AU - Saxena, Pranjal
AU - Upadhyay, Chandra Shekhar
TI - Local accuracy in finite element analysis using curved isoparametric elements
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 257
EP - 292
AB - The finite element method (FEM) is popularly used for numerically approximating PDE(s) over complicated domains due to its rich mathematical background, versatility, and ease of implementation. In this article, we investigate one of its important features, i.e., the approximation of PDE(s) over nonpolygonal Lipschitz domains by higher-order simplicial elements in 2D and 3D. This important issue is not well understood and often ignored by engineers due to its mathematical complexity, i.e., the FEM approximation of curved domains results in inexact boundary conditions, which is a variational crime. This article explores the role of approximation at curved boundaries. Further, the effect of incompleteness of the approximation space also contributes to the error induced in the curved elements. A simple benchmark test for errors is proposed. Tests are conducted for subparametric and isoparametric approximations. Comparison with isogeometric analysis (IGA) is also presented to highlight the basic differences and advantages of isoparametric elements.
LA - eng
KW - curved boundary; error estimate; isoparametric FEM; isogeometric analysis; patch test; local convergence
UR - http://eudml.org/doc/299974
ER -

References

top
  1. Agrawal, V., Gautam, S. S., 10.1007/s40032-018-0462-6, J. Inst. Engineers (India), Ser. C 100 (2019), 561-585. (2019) DOI10.1007/s40032-018-0462-6
  2. Argyris, J. H., Scharpf, D. W., 10.1017/s0001924000053574, Aeronaut. J. 73 (1969), 55-65. (1969) DOI10.1017/s0001924000053574
  3. Arnold, D. N., Boffi, D., Falk, R. S., 10.1090/s0025-5718-02-01439-4, Math. Comput. 71 (2002), 909-922. (2002) Zbl0993.65125MR1898739DOI10.1090/s0025-5718-02-01439-4
  4. Babuška, I., 10.21136/cmj.1961.100453, Czech. Math. J. 11 (1961), 165-203 Russian. (1961) Zbl0126.11401MR0125326DOI10.21136/cmj.1961.100453
  5. Babuška, I., Strouboulis, T., 10.1093/oso/9780198502760.001.0001, Oxford University Press, Oxford (2001). (2001) Zbl0995.65501MR1857191DOI10.1093/oso/9780198502760.001.0001
  6. Bartels, S., Carstensen, C., Hecht, A., 10.1016/j.cam.2005.04.032, J. Comput. Appl. Math. 192 (2006), 219-250. (2006) Zbl1091.65112MR2228811DOI10.1016/j.cam.2005.04.032
  7. Berger, A. E., Error Estimates for the Finite Element Method: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1972). (1972) MR2940236
  8. Berger, A. E., 10.1016/b978-0-12-068650-6.50033-2, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 757-761. (1972) Zbl0282.65078MR0416064DOI10.1016/b978-0-12-068650-6.50033-2
  9. Berger, A. E., 10.1007/bf01436388, Numer. Math. 21 (1973), 345-349. (1973) Zbl0287.65060MR0343655DOI10.1007/bf01436388
  10. Berger, A. E., Scott, R., Strang, G., Approximate boundary conditions in the finite element method, Symposia Mathematica. Vol. X Academic Press, London (1972), 295-313. (1972) Zbl0266.73050MR0403258
  11. Bernardi, C., 10.1137/0726068, SIAM J. Numer. Anal. 26 (1989), 1212-1240. (1989) Zbl0678.65003MR1014883DOI10.1137/0726068
  12. Blair, J. J., Approximate Solution of Elliptic and Parabolic Boundary Value Problems: Ph.D. Thesis, University of California, Berkeley (1970). (1970) MR2619649
  13. Blair, J. J., 10.1137/0124029, SIAM J. Appl. Math. 24 (1973), 277-285. (1973) Zbl0252.35021MR0317557DOI10.1137/0124029
  14. Blair, J. J., 10.2307/2005966, Math. Comput. 30 (1976), 250-262. (1976) Zbl0342.65068MR0398123DOI10.2307/2005966
  15. Botti, L., 10.1007/s10915-011-9566-3, J. Sci. Comput. 52 (2012), 675-703. (2012) Zbl1255.65222MR2948713DOI10.1007/s10915-011-9566-3
  16. Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15. Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
  17. Chessa, J., Programing the finite element method with Matlab, Available at https://www.math.purdue.edu/ {caiz/math615/matlab_fem.pdf} (2002). (2002) 
  18. Ciarlet, P. G., Raviart, P.-A., 10.1016/0045-7825(72)90006-0, Computer Methods Appl. Mech. Engin. 1 (1972), 217-249. (1972) Zbl0261.65079MR0375801DOI10.1016/0045-7825(72)90006-0
  19. Ciarlet, P. G., Raviart, P.-A., 10.1016/b978-0-12-068650-6.50020-4, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 409-474. (1972) Zbl0262.65070MR0421108DOI10.1016/b978-0-12-068650-6.50020-4
  20. Cottrell, J. A., Hughes, T. J. R., Bazilevs, Y., 10.1002/9780470749081, John Wiley & Sons, Hoboken (2009). (2009) Zbl1378.65009MR3618875DOI10.1002/9780470749081
  21. Dey, S., Curvilinear Mesh generation in 3D, Proceedings of the 8th International Meshing Roundtable South Lake Tahoe, California, USA (1999), 407-417. (1999) 
  22. Ergatoudis, I., Irons, B. M., Zienkiewicz, O. C., 10.1016/0020-7683(68)90031-0, Int. J. Solids Struct. 4 (1968), 31-42. (1968) Zbl0152.42802DOI10.1016/0020-7683(68)90031-0
  23. Fortunato, M., Persson, P.-O., 10.1016/j.jcp.2015.11.020, J. Comput. Phys. 307 (2016), 1-14. (2016) Zbl1352.65607MR3448195DOI10.1016/j.jcp.2015.11.020
  24. Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.-F., Toulorge, T., 10.1007/978-3-319-12886-3_2, IDIHOM: Industrialization of High-Order Methods -- A Top-Down Approach Notes on Numerical Fluid Mechanics and Multidisciplinary Design 128. Springer, Cham (2015), 15-39. (2015) DOI10.1007/978-3-319-12886-3_2
  25. Geuzaine, C., Remacle, J.-F., 10.1002/nme.2579, Int. J. Numer. Methods Eng. 79 (2009), 1309-1331. (2009) Zbl1176.74181MR2566786DOI10.1002/nme.2579
  26. Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y., 10.1016/j.cma.2004.10.008, Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195. (2005) Zbl1151.74419MR2152382DOI10.1016/j.cma.2004.10.008
  27. Hussain, F., Karim, M. S., Ahamad, R., Appropriate Gaussian quadrature formulae for triangles, Int. J. Appl. Math. Comput. 4 (2012), 24-38. (2012) 
  28. Johnen, A., Remacle, J.-F., Geuzaine, C., 10.1016/j.jcp.2012.08.051, J. Comput. Phys. 233 (2013), 359-372. (2013) MR3000936DOI10.1016/j.jcp.2012.08.051
  29. Johnen, A., Remacle, J.-F., Geuzaine, C., 10.1007/s00366-012-0305-7, Eng. Comput. (Lond.) 30 (2014), 375-382. (2014) MR3000936DOI10.1007/s00366-012-0305-7
  30. Jordan, W. B., 10.2172/4157041, Knolls Atomic Power Laboratory, New York (1970). (1970) DOI10.2172/4157041
  31. Lenoir, M., 10.1137/0723036, SIAM J. Numer. Anal. 23 (1986), 562-580. (1986) Zbl0605.65071MR0842644DOI10.1137/0723036
  32. Luo, X., Shephard, M. S., Remacle, J.-F., The influence of geometric approximation on the accuracy of high order methods, Available at https://www.researchgate.net/publication/228599667 (2002), 11 pages. (2002) 
  33. McLeod, R., Mitchell, A. R., 10.1093/imamat/10.3.382, J. Inst. Math. Appl. 10 (1972), 382-393. (1972) Zbl0254.65071MR0440959DOI10.1093/imamat/10.3.382
  34. McLeod, R. J. Y., Mitchell, A. R., 10.1093/imamat/16.2.239, J. Inst. Math. Appl. 16 (1975), 239-246. (1975) Zbl0308.65065MR0400747DOI10.1093/imamat/16.2.239
  35. Minakowski, P., Richter, T., 10.1007/s10915-020-01285-y, J. Sci. Comput. 84 (2020), Article ID 30, 19 pages. (2020) Zbl1458.65152MR4127419DOI10.1007/s10915-020-01285-y
  36. Mitchell, A. R., Phillips, G., Wachspress, E., 10.1093/imamat/8.2.260, J. Inst. Math. Appl. 8 (1971), 260-269. (1971) Zbl0229.65082MR0292262DOI10.1093/imamat/8.2.260
  37. Moxey, D., Sastry, S. P., Kirby, R. M., 10.1007/s10915-018-0795-6, J. Sci. Comput. 78 (2019), 1045-1062. (2019) Zbl1417.65207MR3918679DOI10.1007/s10915-018-0795-6
  38. Nguyen, V. P., Anitescu, C., Bordas, S. P. A., Rabczuk, T., 10.1016/j.matcom.2015.05.008, Math. Comput. Simul. 117 (2015), 89-116. (2015) Zbl1540.65492MR3372009DOI10.1016/j.matcom.2015.05.008
  39. Piegl, L., Tiller, W., 10.1007/978-3-642-97385-7, Monographs in Visual Communication. Springer, Berlin (1995). (1995) Zbl0828.68118DOI10.1007/978-3-642-97385-7
  40. Poya, R., Sevilla, R., Gil, A. J., 10.1007/s00466-016-1302-2, Comput. Mech. 58 (2016), 457-490. (2016) Zbl1398.74472MR3533501DOI10.1007/s00466-016-1302-2
  41. Rektorys, K., 10.1007/978-94-011-6450-4, D. Reidel, Dordrecht (1977). (1977) Zbl0371.35002MR0487653DOI10.1007/978-94-011-6450-4
  42. Rogers, D. F., 10.1016/b978-1-55860-669-2.x5000-3, Elsevier, Amsterdam (2000). (2000) DOI10.1016/b978-1-55860-669-2.x5000-3
  43. Ruiz-Gironés, E., Sarrate, J., Roca, X., 10.1016/j.proeng.2016.11.108, Procedia Eng. 163 (2016), 315-327. (2016) DOI10.1016/j.proeng.2016.11.108
  44. Ruiz-Gironés, E., Sarrate, J., Roca, X., 10.1016/j.jcp.2021.110500, J. Comput. Phys. 443 (2021), Article ID 110500, 22 pages. (2021) Zbl07515413MR4273818DOI10.1016/j.jcp.2021.110500
  45. Sastry, S. P., Kirby, R. M., 10.1007/978-3-319-02335-9_20, Proceedings of the 22nd International Meshing Roundtable Springer, Cham (2014), 349-366. (2014) DOI10.1007/978-3-319-02335-9_20
  46. Scott, L. R., Finite-Element Techniques for Curved Boundaries: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1973). (1973) MR2940387
  47. Scott, L. R., 10.1137/0712032, SIAM J. Numer. Anal. 12 (1975), 404-427. (1975) Zbl0357.65082MR0386304DOI10.1137/0712032
  48. Sevilla, R., Fernández-Méndez, S., 10.1016/j.finel.2011.05.011, Finite Elem. Anal. Des. 47 (2011), 1209-1220. (2011) MR2817724DOI10.1016/j.finel.2011.05.011
  49. Sevilla, R., Fernández-Méndez, S., Huerta, A., NURBS-enhanced finite element method, European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006 Delft University of Technology, Delft (2006), 1-13. (2006) MR2455923
  50. Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/fld.1711, Int. J. Numer. Methods Fluids 57 (2008), 1051-1069. (2008) Zbl1140.76023MR2435082DOI10.1002/fld.1711
  51. Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/nme.2311, Int. J. Numer. Methods Eng. 76 (2008), 56-83. (2008) Zbl1162.65389MR2455923DOI10.1002/nme.2311
  52. Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/nme.3129, Int. J. Numer. Methods Eng. 87 (2011), 719-734. (2011) Zbl1242.65244MR2858254DOI10.1002/nme.3129
  53. Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/nme.3164, Int. J. Numer. Methods Eng. 88 (2011), 103-125. (2011) Zbl1242.78032MR2835747DOI10.1002/nme.3164
  54. Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1007/s11831-011-9066-5, Arch. Comput. Methods Eng. 18 (2011), 441-484. (2011) MR2851386DOI10.1007/s11831-011-9066-5
  55. Strang, G., 10.1016/b978-0-12-068650-6.50030-7, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 689-710. (1972) Zbl0264.65068MR0413554DOI10.1016/b978-0-12-068650-6.50030-7
  56. Strang, G., Berger, A. E., 10.1090/pspum/023/0337023, Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. AMS, Providence (1973), 199-205. (1973) Zbl0259.35020MR0337023DOI10.1090/pspum/023/0337023
  57. Szabó, B., I.Ḃabuška, 10.1002/9781119993834, John Wiley & Sons, Hoboken (2011). (2011) Zbl1410.65003MR1164869DOI10.1002/9781119993834
  58. Xie, Z., Sevilla, R., Hassan, O., Morgan, K., 10.1007/s00466-012-0736-4, Comput. Mech. 51 (2013), 361-374. (2013) MR3029066DOI10.1007/s00466-012-0736-4
  59. Xue, D., Control of Geometry Error in h p Finite Element (FE) Simulations of Electromagnetic (EM) Waves: Ph.D. Thesis, The University of Texas at Austin, Austin (2005). (2005) MR2707661
  60. Xue, D., Demkowicz, L., Control of geometry induced error in h p finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries, Int. J. Numer. Anal. Model. 2 (2005), 283-300. (2005) Zbl1073.65122MR2112649
  61. Zienkiewicz, O. C., Taylor, R. L., 10.1016/s0045-7825(97)00085-6, Comput. Methods Appl. Mech. Eng. 149 (1997), 223-254. (1997) Zbl0918.73134MR1486242DOI10.1016/s0045-7825(97)00085-6
  62. Zlámal, M., 10.1007/bf02165594, Numer. Math. 14 (1970), 394-402. (1970) Zbl0209.18002MR0256577DOI10.1007/bf02165594
  63. Zlámal, M., 10.1137/0710022, SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) Zbl0285.65067MR0395263DOI10.1137/0710022
  64. Zlámal, M., 10.1002/nme.1620050307, Int. J. Numer. Methods Eng. 5 (1973), 367-373. (1973) Zbl0254.65073MR0395262DOI10.1002/nme.1620050307
  65. Zlámal, M., 10.1137/0711031, SIAM J. Numer. Anal. 11 (1974), 347-362. (1974) Zbl0277.65064MR0343660DOI10.1137/0711031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.