Local accuracy in finite element analysis using curved isoparametric elements
Pranjal Saxena; Chandra Shekhar Upadhyay
Applications of Mathematics (2025)
- Issue: 2, page 257-292
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topSaxena, Pranjal, and Upadhyay, Chandra Shekhar. "Local accuracy in finite element analysis using curved isoparametric elements." Applications of Mathematics (2025): 257-292. <http://eudml.org/doc/299974>.
@article{Saxena2025,
abstract = {The finite element method (FEM) is popularly used for numerically approximating PDE(s) over complicated domains due to its rich mathematical background, versatility, and ease of implementation. In this article, we investigate one of its important features, i.e., the approximation of PDE(s) over nonpolygonal Lipschitz domains by higher-order simplicial elements in 2D and 3D. This important issue is not well understood and often ignored by engineers due to its mathematical complexity, i.e., the FEM approximation of curved domains results in inexact boundary conditions, which is a variational crime. This article explores the role of approximation at curved boundaries. Further, the effect of incompleteness of the approximation space also contributes to the error induced in the curved elements. A simple benchmark test for errors is proposed. Tests are conducted for subparametric and isoparametric approximations. Comparison with isogeometric analysis (IGA) is also presented to highlight the basic differences and advantages of isoparametric elements.},
author = {Saxena, Pranjal, Upadhyay, Chandra Shekhar},
journal = {Applications of Mathematics},
keywords = {curved boundary; error estimate; isoparametric FEM; isogeometric analysis; patch test; local convergence},
language = {eng},
number = {2},
pages = {257-292},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Local accuracy in finite element analysis using curved isoparametric elements},
url = {http://eudml.org/doc/299974},
year = {2025},
}
TY - JOUR
AU - Saxena, Pranjal
AU - Upadhyay, Chandra Shekhar
TI - Local accuracy in finite element analysis using curved isoparametric elements
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 257
EP - 292
AB - The finite element method (FEM) is popularly used for numerically approximating PDE(s) over complicated domains due to its rich mathematical background, versatility, and ease of implementation. In this article, we investigate one of its important features, i.e., the approximation of PDE(s) over nonpolygonal Lipschitz domains by higher-order simplicial elements in 2D and 3D. This important issue is not well understood and often ignored by engineers due to its mathematical complexity, i.e., the FEM approximation of curved domains results in inexact boundary conditions, which is a variational crime. This article explores the role of approximation at curved boundaries. Further, the effect of incompleteness of the approximation space also contributes to the error induced in the curved elements. A simple benchmark test for errors is proposed. Tests are conducted for subparametric and isoparametric approximations. Comparison with isogeometric analysis (IGA) is also presented to highlight the basic differences and advantages of isoparametric elements.
LA - eng
KW - curved boundary; error estimate; isoparametric FEM; isogeometric analysis; patch test; local convergence
UR - http://eudml.org/doc/299974
ER -
References
top- Agrawal, V., Gautam, S. S., 10.1007/s40032-018-0462-6, J. Inst. Engineers (India), Ser. C 100 (2019), 561-585. (2019) DOI10.1007/s40032-018-0462-6
- Argyris, J. H., Scharpf, D. W., 10.1017/s0001924000053574, Aeronaut. J. 73 (1969), 55-65. (1969) DOI10.1017/s0001924000053574
- Arnold, D. N., Boffi, D., Falk, R. S., 10.1090/s0025-5718-02-01439-4, Math. Comput. 71 (2002), 909-922. (2002) Zbl0993.65125MR1898739DOI10.1090/s0025-5718-02-01439-4
- Babuška, I., 10.21136/cmj.1961.100453, Czech. Math. J. 11 (1961), 165-203 Russian. (1961) Zbl0126.11401MR0125326DOI10.21136/cmj.1961.100453
- Babuška, I., Strouboulis, T., 10.1093/oso/9780198502760.001.0001, Oxford University Press, Oxford (2001). (2001) Zbl0995.65501MR1857191DOI10.1093/oso/9780198502760.001.0001
- Bartels, S., Carstensen, C., Hecht, A., 10.1016/j.cam.2005.04.032, J. Comput. Appl. Math. 192 (2006), 219-250. (2006) Zbl1091.65112MR2228811DOI10.1016/j.cam.2005.04.032
- Berger, A. E., Error Estimates for the Finite Element Method: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1972). (1972) MR2940236
- Berger, A. E., 10.1016/b978-0-12-068650-6.50033-2, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 757-761. (1972) Zbl0282.65078MR0416064DOI10.1016/b978-0-12-068650-6.50033-2
- Berger, A. E., 10.1007/bf01436388, Numer. Math. 21 (1973), 345-349. (1973) Zbl0287.65060MR0343655DOI10.1007/bf01436388
- Berger, A. E., Scott, R., Strang, G., Approximate boundary conditions in the finite element method, Symposia Mathematica. Vol. X Academic Press, London (1972), 295-313. (1972) Zbl0266.73050MR0403258
- Bernardi, C., 10.1137/0726068, SIAM J. Numer. Anal. 26 (1989), 1212-1240. (1989) Zbl0678.65003MR1014883DOI10.1137/0726068
- Blair, J. J., Approximate Solution of Elliptic and Parabolic Boundary Value Problems: Ph.D. Thesis, University of California, Berkeley (1970). (1970) MR2619649
- Blair, J. J., 10.1137/0124029, SIAM J. Appl. Math. 24 (1973), 277-285. (1973) Zbl0252.35021MR0317557DOI10.1137/0124029
- Blair, J. J., 10.2307/2005966, Math. Comput. 30 (1976), 250-262. (1976) Zbl0342.65068MR0398123DOI10.2307/2005966
- Botti, L., 10.1007/s10915-011-9566-3, J. Sci. Comput. 52 (2012), 675-703. (2012) Zbl1255.65222MR2948713DOI10.1007/s10915-011-9566-3
- Brenner, S. C., Scott, L. R., 10.1007/978-0-387-75934-0, Texts in Applied Mathematics 15. Springer, New York (2008). (2008) Zbl1135.65042MR2373954DOI10.1007/978-0-387-75934-0
- Chessa, J., Programing the finite element method with Matlab, Available at https://www.math.purdue.edu/ {caiz/math615/matlab_fem.pdf} (2002). (2002)
- Ciarlet, P. G., Raviart, P.-A., 10.1016/0045-7825(72)90006-0, Computer Methods Appl. Mech. Engin. 1 (1972), 217-249. (1972) Zbl0261.65079MR0375801DOI10.1016/0045-7825(72)90006-0
- Ciarlet, P. G., Raviart, P.-A., 10.1016/b978-0-12-068650-6.50020-4, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 409-474. (1972) Zbl0262.65070MR0421108DOI10.1016/b978-0-12-068650-6.50020-4
- Cottrell, J. A., Hughes, T. J. R., Bazilevs, Y., 10.1002/9780470749081, John Wiley & Sons, Hoboken (2009). (2009) Zbl1378.65009MR3618875DOI10.1002/9780470749081
- Dey, S., Curvilinear Mesh generation in 3D, Proceedings of the 8th International Meshing Roundtable South Lake Tahoe, California, USA (1999), 407-417. (1999)
- Ergatoudis, I., Irons, B. M., Zienkiewicz, O. C., 10.1016/0020-7683(68)90031-0, Int. J. Solids Struct. 4 (1968), 31-42. (1968) Zbl0152.42802DOI10.1016/0020-7683(68)90031-0
- Fortunato, M., Persson, P.-O., 10.1016/j.jcp.2015.11.020, J. Comput. Phys. 307 (2016), 1-14. (2016) Zbl1352.65607MR3448195DOI10.1016/j.jcp.2015.11.020
- Geuzaine, C., Johnen, A., Lambrechts, J., Remacle, J.-F., Toulorge, T., 10.1007/978-3-319-12886-3_2, IDIHOM: Industrialization of High-Order Methods -- A Top-Down Approach Notes on Numerical Fluid Mechanics and Multidisciplinary Design 128. Springer, Cham (2015), 15-39. (2015) DOI10.1007/978-3-319-12886-3_2
- Geuzaine, C., Remacle, J.-F., 10.1002/nme.2579, Int. J. Numer. Methods Eng. 79 (2009), 1309-1331. (2009) Zbl1176.74181MR2566786DOI10.1002/nme.2579
- Hughes, T. J. R., Cottrell, J. A., Bazilevs, Y., 10.1016/j.cma.2004.10.008, Comput. Methods Appl. Mech. Eng. 194 (2005), 4135-4195. (2005) Zbl1151.74419MR2152382DOI10.1016/j.cma.2004.10.008
- Hussain, F., Karim, M. S., Ahamad, R., Appropriate Gaussian quadrature formulae for triangles, Int. J. Appl. Math. Comput. 4 (2012), 24-38. (2012)
- Johnen, A., Remacle, J.-F., Geuzaine, C., 10.1016/j.jcp.2012.08.051, J. Comput. Phys. 233 (2013), 359-372. (2013) MR3000936DOI10.1016/j.jcp.2012.08.051
- Johnen, A., Remacle, J.-F., Geuzaine, C., 10.1007/s00366-012-0305-7, Eng. Comput. (Lond.) 30 (2014), 375-382. (2014) MR3000936DOI10.1007/s00366-012-0305-7
- Jordan, W. B., 10.2172/4157041, Knolls Atomic Power Laboratory, New York (1970). (1970) DOI10.2172/4157041
- Lenoir, M., 10.1137/0723036, SIAM J. Numer. Anal. 23 (1986), 562-580. (1986) Zbl0605.65071MR0842644DOI10.1137/0723036
- Luo, X., Shephard, M. S., Remacle, J.-F., The influence of geometric approximation on the accuracy of high order methods, Available at https://www.researchgate.net/publication/228599667 (2002), 11 pages. (2002)
- McLeod, R., Mitchell, A. R., 10.1093/imamat/10.3.382, J. Inst. Math. Appl. 10 (1972), 382-393. (1972) Zbl0254.65071MR0440959DOI10.1093/imamat/10.3.382
- McLeod, R. J. Y., Mitchell, A. R., 10.1093/imamat/16.2.239, J. Inst. Math. Appl. 16 (1975), 239-246. (1975) Zbl0308.65065MR0400747DOI10.1093/imamat/16.2.239
- Minakowski, P., Richter, T., 10.1007/s10915-020-01285-y, J. Sci. Comput. 84 (2020), Article ID 30, 19 pages. (2020) Zbl1458.65152MR4127419DOI10.1007/s10915-020-01285-y
- Mitchell, A. R., Phillips, G., Wachspress, E., 10.1093/imamat/8.2.260, J. Inst. Math. Appl. 8 (1971), 260-269. (1971) Zbl0229.65082MR0292262DOI10.1093/imamat/8.2.260
- Moxey, D., Sastry, S. P., Kirby, R. M., 10.1007/s10915-018-0795-6, J. Sci. Comput. 78 (2019), 1045-1062. (2019) Zbl1417.65207MR3918679DOI10.1007/s10915-018-0795-6
- Nguyen, V. P., Anitescu, C., Bordas, S. P. A., Rabczuk, T., 10.1016/j.matcom.2015.05.008, Math. Comput. Simul. 117 (2015), 89-116. (2015) Zbl1540.65492MR3372009DOI10.1016/j.matcom.2015.05.008
- Piegl, L., Tiller, W., 10.1007/978-3-642-97385-7, Monographs in Visual Communication. Springer, Berlin (1995). (1995) Zbl0828.68118DOI10.1007/978-3-642-97385-7
- Poya, R., Sevilla, R., Gil, A. J., 10.1007/s00466-016-1302-2, Comput. Mech. 58 (2016), 457-490. (2016) Zbl1398.74472MR3533501DOI10.1007/s00466-016-1302-2
- Rektorys, K., 10.1007/978-94-011-6450-4, D. Reidel, Dordrecht (1977). (1977) Zbl0371.35002MR0487653DOI10.1007/978-94-011-6450-4
- Rogers, D. F., 10.1016/b978-1-55860-669-2.x5000-3, Elsevier, Amsterdam (2000). (2000) DOI10.1016/b978-1-55860-669-2.x5000-3
- Ruiz-Gironés, E., Sarrate, J., Roca, X., 10.1016/j.proeng.2016.11.108, Procedia Eng. 163 (2016), 315-327. (2016) DOI10.1016/j.proeng.2016.11.108
- Ruiz-Gironés, E., Sarrate, J., Roca, X., 10.1016/j.jcp.2021.110500, J. Comput. Phys. 443 (2021), Article ID 110500, 22 pages. (2021) Zbl07515413MR4273818DOI10.1016/j.jcp.2021.110500
- Sastry, S. P., Kirby, R. M., 10.1007/978-3-319-02335-9_20, Proceedings of the 22nd International Meshing Roundtable Springer, Cham (2014), 349-366. (2014) DOI10.1007/978-3-319-02335-9_20
- Scott, L. R., Finite-Element Techniques for Curved Boundaries: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge (1973). (1973) MR2940387
- Scott, L. R., 10.1137/0712032, SIAM J. Numer. Anal. 12 (1975), 404-427. (1975) Zbl0357.65082MR0386304DOI10.1137/0712032
- Sevilla, R., Fernández-Méndez, S., 10.1016/j.finel.2011.05.011, Finite Elem. Anal. Des. 47 (2011), 1209-1220. (2011) MR2817724DOI10.1016/j.finel.2011.05.011
- Sevilla, R., Fernández-Méndez, S., Huerta, A., NURBS-enhanced finite element method, European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006 Delft University of Technology, Delft (2006), 1-13. (2006) MR2455923
- Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/fld.1711, Int. J. Numer. Methods Fluids 57 (2008), 1051-1069. (2008) Zbl1140.76023MR2435082DOI10.1002/fld.1711
- Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/nme.2311, Int. J. Numer. Methods Eng. 76 (2008), 56-83. (2008) Zbl1162.65389MR2455923DOI10.1002/nme.2311
- Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/nme.3129, Int. J. Numer. Methods Eng. 87 (2011), 719-734. (2011) Zbl1242.65244MR2858254DOI10.1002/nme.3129
- Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1002/nme.3164, Int. J. Numer. Methods Eng. 88 (2011), 103-125. (2011) Zbl1242.78032MR2835747DOI10.1002/nme.3164
- Sevilla, R., Fernández-Méndez, S., Huerta, A., 10.1007/s11831-011-9066-5, Arch. Comput. Methods Eng. 18 (2011), 441-484. (2011) MR2851386DOI10.1007/s11831-011-9066-5
- Strang, G., 10.1016/b978-0-12-068650-6.50030-7, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations Academic Press, New York (1972), 689-710. (1972) Zbl0264.65068MR0413554DOI10.1016/b978-0-12-068650-6.50030-7
- Strang, G., Berger, A. E., 10.1090/pspum/023/0337023, Partial Differential Equations Proceedings of Symposia in Pure Mathematics 23. AMS, Providence (1973), 199-205. (1973) Zbl0259.35020MR0337023DOI10.1090/pspum/023/0337023
- Szabó, B., I.Ḃabuška, 10.1002/9781119993834, John Wiley & Sons, Hoboken (2011). (2011) Zbl1410.65003MR1164869DOI10.1002/9781119993834
- Xie, Z., Sevilla, R., Hassan, O., Morgan, K., 10.1007/s00466-012-0736-4, Comput. Mech. 51 (2013), 361-374. (2013) MR3029066DOI10.1007/s00466-012-0736-4
- Xue, D., Control of Geometry Error in Finite Element (FE) Simulations of Electromagnetic (EM) Waves: Ph.D. Thesis, The University of Texas at Austin, Austin (2005). (2005) MR2707661
- Xue, D., Demkowicz, L., Control of geometry induced error in finite element (FE) simulations. I. Evaluation of FE error for curvilinear geometries, Int. J. Numer. Anal. Model. 2 (2005), 283-300. (2005) Zbl1073.65122MR2112649
- Zienkiewicz, O. C., Taylor, R. L., 10.1016/s0045-7825(97)00085-6, Comput. Methods Appl. Mech. Eng. 149 (1997), 223-254. (1997) Zbl0918.73134MR1486242DOI10.1016/s0045-7825(97)00085-6
- Zlámal, M., 10.1007/bf02165594, Numer. Math. 14 (1970), 394-402. (1970) Zbl0209.18002MR0256577DOI10.1007/bf02165594
- Zlámal, M., 10.1137/0710022, SIAM J. Numer. Anal. 10 (1973), 229-240. (1973) Zbl0285.65067MR0395263DOI10.1137/0710022
- Zlámal, M., 10.1002/nme.1620050307, Int. J. Numer. Methods Eng. 5 (1973), 367-373. (1973) Zbl0254.65073MR0395262DOI10.1002/nme.1620050307
- Zlámal, M., 10.1137/0711031, SIAM J. Numer. Anal. 11 (1974), 347-362. (1974) Zbl0277.65064MR0343660DOI10.1137/0711031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.