Stochastic queue core problem with an efficient length on a tree network
Jafar Fathali; Mehdi Zaferanieh
Kybernetika (2025)
- Issue: 2, page 185-201
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFathali, Jafar, and Zaferanieh, Mehdi. "Stochastic queue core problem with an efficient length on a tree network." Kybernetika (2025): 185-201. <http://eudml.org/doc/299981>.
@article{Fathali2025,
abstract = {In this paper, we consider a stochastic queue core ($SQC$) problem on a tree network, aiming to identify a path $P$, called the core, in an $M/G/1$ environment system. Let $T$ be a tree network, the $SQC$ problem on $T$ involves finding a core $P$, with an optimal length, that minimizes the total weighted travel time from all vertices to the core as well as the average response time to the customer demands. We assume that a mobile server traverses the core to provide services to customers, while customers move to their nearest vertex on the core to receive service. Some general properties of the $SQC$ problem on the tree network are represented. Then a polynomial time algorithm is proposed to solve this problem.},
author = {Fathali, Jafar, Zaferanieh, Mehdi},
journal = {Kybernetika},
keywords = {location theory; core; $M/G/1$ queue},
language = {eng},
number = {2},
pages = {185-201},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stochastic queue core problem with an efficient length on a tree network},
url = {http://eudml.org/doc/299981},
year = {2025},
}
TY - JOUR
AU - Fathali, Jafar
AU - Zaferanieh, Mehdi
TI - Stochastic queue core problem with an efficient length on a tree network
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 185
EP - 201
AB - In this paper, we consider a stochastic queue core ($SQC$) problem on a tree network, aiming to identify a path $P$, called the core, in an $M/G/1$ environment system. Let $T$ be a tree network, the $SQC$ problem on $T$ involves finding a core $P$, with an optimal length, that minimizes the total weighted travel time from all vertices to the core as well as the average response time to the customer demands. We assume that a mobile server traverses the core to provide services to customers, while customers move to their nearest vertex on the core to receive service. Some general properties of the $SQC$ problem on the tree network are represented. Then a polynomial time algorithm is proposed to solve this problem.
LA - eng
KW - location theory; core; $M/G/1$ queue
UR - http://eudml.org/doc/299981
ER -
References
top- Zaferanieh, M. Abareshi abd M., , Transport. Res. Part B: Methodological 123 (2019), 1-20. DOI
- Abouee-Mehrizi, H., Baron, O., , Queueing Systems 82 (2016), 121-148. MR3457013DOI
- Adeleke, O. J., Olukanni, D. O., , Recycling 5 (2020), 10. DOI
- Alstrup, S., Lauridsen, P. W., Sommerlund, P., Thorup, M., Finding cores of limited length., In: Algorithms and Data Structures: 5th International Workshop, WADS'97, Halifax 1997, Proceedings 5, Springer, pp. 45-54.
- Avella, P., Boccia, M., Sforza, A., Vasilev, snd I., , Comput. Optim. Appl. 32 (2005), 215-230. MR2207845DOI
- Batta, R., Berman, O., , Networks 19 (1989), 717-728. MR1013756DOI
- Becker, R. I., Chang, Y. I., Lari, I., Scozzari, A., Storchi, G., , Discrete Appl. Math. 118 (2002), 25-42. MR1888547DOI
- Berman, 0., Drezner, Z., , J. Oper. Res. Soc. 58 (2007), 91-99. DOI
- Berman, 0., Krass, D., Wang, J., , IIE Trans. 38 (2006), 933-946. DOI
- Berman, 0., Larson, R. C., Chiu, S. S., , Oper. Ress 33 (1985), 746-771. MR0797884DOI
- Berman, 0., Larson, R. C., Parkan, C., , Transport. Sci. 21 (1987), 207-216. MR0909467DOI
- Berman, 0., Mandowsky, R. R., , Europ. J. Oper. Ress 26 (1986), 238-250. MR0852294DOI
- Chen, C., Yao, B., Chen, G., Tian, Z., , Engrg. Optim. 54 (2022), 709-726. MR4410853DOI
- Chiu, S. S., Berman, O., Larson, R. C., , Management Sci. 31 (1985), 764-772. MR0793874DOI
- Fathali, J., Nazari, M., Mahdvar, K., Semi-obnoxious backup 2-median problem on a tree., J. Appl. Res. Industr. Engrg. 8 (2021), 159-168.
- Fathali, J., Zaferanieh, M., , J. Combinat. Optim. 45 (2023), 69. MR4554039DOI
- Gavish, B., Sridhar, S., , Networks 26 (1995), 305-317. MR1365024DOI
- Goldman, A. J., , Transport. Sci. 5 (1971), 212-221. MR0359738DOI
- Hedetniemi, S. M., Cockayne, E., Hedetniemi, S., , Transport. Sci. 15 (1981), 98-114. MR0639598DOI
- Kariv, 0., Hakimi, S. L., , SIAM J. Appl. Math. 37 (1979), 513-538. MR0549138DOI
- Kong, Y. X., Shi, G. Y., Wu, R. J., Zhang, Y. C., , Physics Rep. 832 (2019), 1-32. MR4035043DOI
- Kovacs, G., Spens, K. M., , Int. J. Phys. Distribut. Logist. Management 37 (2007), 99-114. DOI
- Mohammadi, M., Jolai, F., Rostami, H., , Math. Computer Modell. 54 (2011), 2623-2638. MR2841808DOI
- Morgan, C. A., Slater, P. J., , J. Algorithms 1 (1980), 247-258. MR0604866DOI
- Morgan, S. A., Agee, N. H., , Frontiers Health Services Management 29 (2012), 3-10. DOI
- Moshtagh, M., Fathali, J., Smith, J. M., , Europ. J. Oper. Res. 269 (2018), 730-748. MR3790048DOI
- Moshtagh, M., Fathali, J., Smith, J. M., Mahdavi-Amiri, N., , Math. Methods Oper. Res. 89 (2019), 115-142. MR3918542DOI
- Owen, S. H., Daskin, M. S., , Europ. J. Oper. Res. 111 (1998), 423-447. DOI
- Ozdamar, L., Ekinci, E., Kucukyazici, B., , Ann. Oper. Res. 129 (2004), 217-245. MR2072300DOI
- Pourmohammadi, P., Tavakkoli-Moghaddam, R., Rahimi, Y., Triki, C., , Ann. Oper. Res. 324 (2023), 1099-1128. MR4581626DOI
- Slater, P. J., Locating central paths in a graph., Transport. Sci. 16 (1982), 1-18.
- Tamir, A., , Oper. Res. Lett. 19 (1996), 59-64. MR1405743DOI
- Tavakkoli-Moghaddam, R., Vazifeh-Noshafagh, S., A., A., Taleizadeh, Hajipour, V., Mahmoudi, A., , Engrg. Optim. 49 (2017), 136-160. MR3567728DOI
- Wang, Q., Batta, R., Rump, C. M., 10.1023/A:1020961732667, Ann. Oper. Res. 111 (2002), 17-34. MR1954660DOI10.1023/A:1020961732667
- Zaferanieh, M., Abareshi, M., Fathali, J., , Transport. Lett. 14 (2022), 307-316. DOI
- Zaferanieh, M., J, Fathali, , Math. Methods Oper. Res. 76 (2012), 147-160. MR2972611DOI
- Zaferanieh, M., Sadra, M., Basirat, T., , J. Modell. Management 19 (2024), 1883-1906. DOI
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.