Stochastic queue core problem with an efficient length on a tree network

Jafar Fathali; Mehdi Zaferanieh

Kybernetika (2025)

  • Issue: 2, page 185-201
  • ISSN: 0023-5954

Abstract

top
In this paper, we consider a stochastic queue core ( S Q C ) problem on a tree network, aiming to identify a path P , called the core, in an M / G / 1 environment system. Let T be a tree network, the S Q C problem on T involves finding a core P , with an optimal length, that minimizes the total weighted travel time from all vertices to the core as well as the average response time to the customer demands. We assume that a mobile server traverses the core to provide services to customers, while customers move to their nearest vertex on the core to receive service. Some general properties of the S Q C problem on the tree network are represented. Then a polynomial time algorithm is proposed to solve this problem.

How to cite

top

Fathali, Jafar, and Zaferanieh, Mehdi. "Stochastic queue core problem with an efficient length on a tree network." Kybernetika (2025): 185-201. <http://eudml.org/doc/299981>.

@article{Fathali2025,
abstract = {In this paper, we consider a stochastic queue core ($SQC$) problem on a tree network, aiming to identify a path $P$, called the core, in an $M/G/1$ environment system. Let $T$ be a tree network, the $SQC$ problem on $T$ involves finding a core $P$, with an optimal length, that minimizes the total weighted travel time from all vertices to the core as well as the average response time to the customer demands. We assume that a mobile server traverses the core to provide services to customers, while customers move to their nearest vertex on the core to receive service. Some general properties of the $SQC$ problem on the tree network are represented. Then a polynomial time algorithm is proposed to solve this problem.},
author = {Fathali, Jafar, Zaferanieh, Mehdi},
journal = {Kybernetika},
keywords = {location theory; core; $M/G/1$ queue},
language = {eng},
number = {2},
pages = {185-201},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stochastic queue core problem with an efficient length on a tree network},
url = {http://eudml.org/doc/299981},
year = {2025},
}

TY - JOUR
AU - Fathali, Jafar
AU - Zaferanieh, Mehdi
TI - Stochastic queue core problem with an efficient length on a tree network
JO - Kybernetika
PY - 2025
PB - Institute of Information Theory and Automation AS CR
IS - 2
SP - 185
EP - 201
AB - In this paper, we consider a stochastic queue core ($SQC$) problem on a tree network, aiming to identify a path $P$, called the core, in an $M/G/1$ environment system. Let $T$ be a tree network, the $SQC$ problem on $T$ involves finding a core $P$, with an optimal length, that minimizes the total weighted travel time from all vertices to the core as well as the average response time to the customer demands. We assume that a mobile server traverses the core to provide services to customers, while customers move to their nearest vertex on the core to receive service. Some general properties of the $SQC$ problem on the tree network are represented. Then a polynomial time algorithm is proposed to solve this problem.
LA - eng
KW - location theory; core; $M/G/1$ queue
UR - http://eudml.org/doc/299981
ER -

References

top
  1. Zaferanieh, M. Abareshi abd M., , Transport. Res. Part B: Methodological 123 (2019), 1-20. DOI
  2. Abouee-Mehrizi, H., Baron, O., , Queueing Systems 82 (2016), 121-148. MR3457013DOI
  3. Adeleke, O. J., Olukanni, D. O., , Recycling 5 (2020), 10. DOI
  4. Alstrup, S., Lauridsen, P. W., Sommerlund, P., Thorup, M., Finding cores of limited length., In: Algorithms and Data Structures: 5th International Workshop, WADS'97, Halifax 1997, Proceedings 5, Springer, pp. 45-54. 
  5. Avella, P., Boccia, M., Sforza, A., Vasilev, snd I., , Comput. Optim. Appl. 32 (2005), 215-230. MR2207845DOI
  6. Batta, R., Berman, O., , Networks 19 (1989), 717-728. MR1013756DOI
  7. Becker, R. I., Chang, Y. I., Lari, I., Scozzari, A., Storchi, G., , Discrete Appl. Math. 118 (2002), 25-42. MR1888547DOI
  8. Berman, 0., Drezner, Z., , J. Oper. Res. Soc. 58 (2007), 91-99. DOI
  9. Berman, 0., Krass, D., Wang, J., , IIE Trans. 38 (2006), 933-946. DOI
  10. Berman, 0., Larson, R. C., Chiu, S. S., , Oper. Ress 33 (1985), 746-771. MR0797884DOI
  11. Berman, 0., Larson, R. C., Parkan, C., , Transport. Sci. 21 (1987), 207-216. MR0909467DOI
  12. Berman, 0., Mandowsky, R. R., , Europ. J. Oper. Ress 26 (1986), 238-250. MR0852294DOI
  13. Chen, C., Yao, B., Chen, G., Tian, Z., , Engrg. Optim. 54 (2022), 709-726. MR4410853DOI
  14. Chiu, S. S., Berman, O., Larson, R. C., , Management Sci. 31 (1985), 764-772. MR0793874DOI
  15. Fathali, J., Nazari, M., Mahdvar, K., Semi-obnoxious backup 2-median problem on a tree., J. Appl. Res. Industr. Engrg. 8 (2021), 159-168. 
  16. Fathali, J., Zaferanieh, M., , J. Combinat. Optim. 45 (2023), 69. MR4554039DOI
  17. Gavish, B., Sridhar, S., , Networks 26 (1995), 305-317. MR1365024DOI
  18. Goldman, A. J., , Transport. Sci. 5 (1971), 212-221. MR0359738DOI
  19. Hedetniemi, S. M., Cockayne, E., Hedetniemi, S., , Transport. Sci. 15 (1981), 98-114. MR0639598DOI
  20. Kariv, 0., Hakimi, S. L., , SIAM J. Appl. Math. 37 (1979), 513-538. MR0549138DOI
  21. Kong, Y. X., Shi, G. Y., Wu, R. J., Zhang, Y. C., , Physics Rep. 832 (2019), 1-32. MR4035043DOI
  22. Kovacs, G., Spens, K. M., , Int. J. Phys. Distribut. Logist. Management 37 (2007), 99-114. DOI
  23. Mohammadi, M., Jolai, F., Rostami, H., , Math. Computer Modell. 54 (2011), 2623-2638. MR2841808DOI
  24. Morgan, C. A., Slater, P. J., , J. Algorithms 1 (1980), 247-258. MR0604866DOI
  25. Morgan, S. A., Agee, N. H., , Frontiers Health Services Management 29 (2012), 3-10. DOI
  26. Moshtagh, M., Fathali, J., Smith, J. M., , Europ. J. Oper. Res. 269 (2018), 730-748. MR3790048DOI
  27. Moshtagh, M., Fathali, J., Smith, J. M., Mahdavi-Amiri, N., , Math. Methods Oper. Res. 89 (2019), 115-142. MR3918542DOI
  28. Owen, S. H., Daskin, M. S., , Europ. J. Oper. Res. 111 (1998), 423-447. DOI
  29. Ozdamar, L., Ekinci, E., Kucukyazici, B., , Ann. Oper. Res. 129 (2004), 217-245. MR2072300DOI
  30. Pourmohammadi, P., Tavakkoli-Moghaddam, R., Rahimi, Y., Triki, C., , Ann. Oper. Res. 324 (2023), 1099-1128. MR4581626DOI
  31. Slater, P. J., Locating central paths in a graph., Transport. Sci. 16 (1982), 1-18. 
  32. Tamir, A., , Oper. Res. Lett. 19 (1996), 59-64. MR1405743DOI
  33. Tavakkoli-Moghaddam, R., Vazifeh-Noshafagh, S., A., A., Taleizadeh, Hajipour, V., Mahmoudi, A., , Engrg. Optim. 49 (2017), 136-160. MR3567728DOI
  34. Wang, Q., Batta, R., Rump, C. M., 10.1023/A:1020961732667, Ann. Oper. Res. 111 (2002), 17-34. MR1954660DOI10.1023/A:1020961732667
  35. Zaferanieh, M., Abareshi, M., Fathali, J., , Transport. Lett. 14 (2022), 307-316. DOI
  36. Zaferanieh, M., J, Fathali, , Math. Methods Oper. Res. 76 (2012), 147-160. MR2972611DOI
  37. Zaferanieh, M., Sadra, M., Basirat, T., , J. Modell. Management 19 (2024), 1883-1906. DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.