New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications

Omid Shojaee; Reza Azimi

Applications of Mathematics (2025)

  • Issue: 2, page 231-256
  • ISSN: 0862-7940

Abstract

top
Fitting a suitable distribution to the data from a real experiment is a crucial topic in statistics. However, many of the existing distributions cannot account for the effect of environmental conditions on the components under test. Moreover, the components are usually heterogeneous, meaning that they do not share the same distribution. In this article, we aim to obtain a new generalization of the Compound Rayleigh distribution by using mixture models and incorporating the environmental conditions on the components. The new distribution is expected to be a flexible distribution that encompasses some other distributions as special cases. We will also examine the properties and aging criteria of the new distribution. Over the past decades, various methods to estimate the unknown parameters of a statistical distribution have been proposed from the availability of type-II censored data. Thus, we estimate the parameters of the proposed distribution in the presence of type-II censored data using a Monte Carlo simulation study and real data analysis with maximum likelihood, maximum product of spacings, and Bayesian methods. Finally, different methods are compared by calculating the mean square error (MSE) of the resulting estimators.

How to cite

top

Shojaee, Omid, and Azimi, Reza. "New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications." Applications of Mathematics (2025): 231-256. <http://eudml.org/doc/299986>.

@article{Shojaee2025,
abstract = {Fitting a suitable distribution to the data from a real experiment is a crucial topic in statistics. However, many of the existing distributions cannot account for the effect of environmental conditions on the components under test. Moreover, the components are usually heterogeneous, meaning that they do not share the same distribution. In this article, we aim to obtain a new generalization of the Compound Rayleigh distribution by using mixture models and incorporating the environmental conditions on the components. The new distribution is expected to be a flexible distribution that encompasses some other distributions as special cases. We will also examine the properties and aging criteria of the new distribution. Over the past decades, various methods to estimate the unknown parameters of a statistical distribution have been proposed from the availability of type-II censored data. Thus, we estimate the parameters of the proposed distribution in the presence of type-II censored data using a Monte Carlo simulation study and real data analysis with maximum likelihood, maximum product of spacings, and Bayesian methods. Finally, different methods are compared by calculating the mean square error (MSE) of the resulting estimators.},
author = {Shojaee, Omid, Azimi, Reza},
journal = {Applications of Mathematics},
keywords = {Bayesian estimation; compound Rayleigh distribution; maximum likelihood; maximum product of spacings; Monte Carlo simulation; Rayleigh distribution},
language = {eng},
number = {2},
pages = {231-256},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications},
url = {http://eudml.org/doc/299986},
year = {2025},
}

TY - JOUR
AU - Shojaee, Omid
AU - Azimi, Reza
TI - New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 231
EP - 256
AB - Fitting a suitable distribution to the data from a real experiment is a crucial topic in statistics. However, many of the existing distributions cannot account for the effect of environmental conditions on the components under test. Moreover, the components are usually heterogeneous, meaning that they do not share the same distribution. In this article, we aim to obtain a new generalization of the Compound Rayleigh distribution by using mixture models and incorporating the environmental conditions on the components. The new distribution is expected to be a flexible distribution that encompasses some other distributions as special cases. We will also examine the properties and aging criteria of the new distribution. Over the past decades, various methods to estimate the unknown parameters of a statistical distribution have been proposed from the availability of type-II censored data. Thus, we estimate the parameters of the proposed distribution in the presence of type-II censored data using a Monte Carlo simulation study and real data analysis with maximum likelihood, maximum product of spacings, and Bayesian methods. Finally, different methods are compared by calculating the mean square error (MSE) of the resulting estimators.
LA - eng
KW - Bayesian estimation; compound Rayleigh distribution; maximum likelihood; maximum product of spacings; Monte Carlo simulation; Rayleigh distribution
UR - http://eudml.org/doc/299986
ER -

References

top
  1. Al-Babtain, A. A., 10.1016/j.jksus.2020.04.015, J. King Saud Univ. Sci. 32 (2020), 2576-2581. (2020) DOI10.1016/j.jksus.2020.04.015
  2. Algarni, A., Almarashi, A. M., Abd-Elmougod, G. A., Abo-Eleneen, Z. A., 10.1007/s10910-019-01058-5, J. Math. Chem. 58 (2020), 950-966. (2020) Zbl1439.62212MR4087456DOI10.1007/s10910-019-01058-5
  3. Ali, S., 10.1016/j.apm.2014.05.039, Appl. Math. Modelling 39 (2015), 515-530. (2015) Zbl1432.62340MR3282592DOI10.1016/j.apm.2014.05.039
  4. Al-Zahrani, B., Ali, M. A., 10.19139/soic.v2i2.55, Stat. Optim. Inf. Comput. 2 (2014), 147-160. (2014) MR3351377DOI10.19139/soic.v2i2.55
  5. Asgharzadeh, A., Valiollahi, R., Raqab, M. Z., 10.1080/03610918.2014.964046, Commun. Stat., Simulation Comput. 46 (2017), 379-394. (2017) Zbl1359.62159MR3563501DOI10.1080/03610918.2014.964046
  6. Balakrishnan, N., Aggarwala, R., 10.1007/978-1-4612-1334-5, Birkhäuser, Boston (2000). (2000) MR1763020DOI10.1007/978-1-4612-1334-5
  7. Balakrishnan, N., Cramer, E., 10.1007/978-0-8176-4807-7, Statistics for Industry and Technology. Birkhäuser, New York (2014). (2014) Zbl1365.62001MR3309531DOI10.1007/978-0-8176-4807-7
  8. Barot, D. R., Patel, M. N., 10.1080/03610926.2015.1019140, Commun. Stat., Theory Methods 46 (2017), 1317-1336. (2017) Zbl1360.62032MR3565627DOI10.1080/03610926.2015.1019140
  9. Bhattacharya, S. K., Tyagi, R. K., 10.1007/BF02863540, Trab. Estad. 5 (1990), 81-92. (1990) Zbl0717.62029DOI10.1007/BF02863540
  10. Chalabi, I., 10.1080/2150704X.2023.2215894, Remote Sensing Lett. 14 (2023), 433-441. (2023) DOI10.1080/2150704X.2023.2215894
  11. Chiodo, E., Fantauzzi, M., Mazzanti, G., 10.3390/en15030861, Energies 15 (2022), Article ID 861, 26 pages. (2022) DOI10.3390/en15030861
  12. Demiray, D., laslan, F. Kızı, 10.1080/00949655.2021.1935947, J. Stat. Comput. Simulation 92 (2022), 159-190. (2022) Zbl07497826MR07497826DOI10.1080/00949655.2021.1935947
  13. Dey, S., Dey, T., 10.1080/02664763.2014.922165, J. Appl. Stat. 41 (2014), 2557-2576. (2014) Zbl1514.62525MR3262679DOI10.1080/02664763.2014.922165
  14. Dey, S., Pradhan, B., 10.1016/j.stamet.2013.07.007, Stat. Methodol. 18 (2014), 101-114. (2014) Zbl1486.62263MR3151866DOI10.1016/j.stamet.2013.07.007
  15. Diamoutene, A., Noureddine, F., Kamsu-Foguem, B., Barro, D., 10.1007/s42405-021-00371-1, Int. J. Aeronaut. Space Sci. 22 (2021), 1222-1234. (2021) DOI10.1007/s42405-021-00371-1
  16. Dube, M., Krishna, H., Garg, R., 10.1080/00949655.2015.1052440, J. Stat. Comput. Simulation 86 (2016), 1095-1114. (2016) Zbl1510.62409MR3441558DOI10.1080/00949655.2015.1052440
  17. Fatima, K., Jan, U., Ahmad, S. P., 10.6339/JDS.201807_16(3).0005, J. Data Sci. 16 (2018), 531-548. (2018) DOI10.6339/JDS.201807_16(3).0005
  18. Feroze, N., Aslam, M., Khan, I. H., Khan, M. H., 10.1007/s00500-020-05285-w, Soft Comput. 25 (2021), 2131-2152. (2021) Zbl1491.62138DOI10.1007/s00500-020-05285-w
  19. Finkelstein, M., 10.1007/978-1-84800-986-8, Springer, London (2008). (2008) DOI10.1007/978-1-84800-986-8
  20. Galton, F., Inquiries into Human Faculty and its Development, Macmillan, London (1988). (1988) 
  21. Hamad, A. M., Salman, B. B., 10.1016/j.asej.2021.02.029, Ain Shams Eng. J. 12 (2021), 4037-4044. (2021) DOI10.1016/j.asej.2021.02.029
  22. Hussein, L. K., Rasheed, H. A., Hussein, I. H., 10.30526/36.2.3044, Ibn Al-Haitham J. Pure Appl. Sci. 36 (2023), 390-406. (2023) DOI10.30526/36.2.3044
  23. Jain, K., Singla, N., Sharma, S. K., 10.1155/2014/736101, J. Probab. 2014 (2014), Article ID 736101, 11 pages. (2014) MR3115122DOI10.1155/2014/736101
  24. Karim, R., Hossain, P., Begum, S., Hossain, F., 10.1155/2011/238290, J. Appl. Math. 2011 (2011), Article ID 238290, 17 pages. (2011) Zbl1235.62016MR2852849DOI10.1155/2011/238290
  25. Kayal, T., Tripathi, Y. M., Kundu, D., Rastogi, M. K., 10.19139/soic-2310-5070-486, Stat. Optim. Inf. Comput. 10 (2022), 627-642. (2022) MR4401418DOI10.19139/soic-2310-5070-486
  26. Lindley, D. V., 10.1007/BF02888353, Trab. Estad. 31 (1980), 223-245. (1980) Zbl0458.62002MR0638879DOI10.1007/BF02888353
  27. Ma, J., Wang, L., Tripathi, Y. M., Rastogi, M. K., 10.1080/03610918.2021.1908552, Commun. Stat., Simulation Comput. 52 (2023), 2388-2407. (2023) Zbl07714513MR4602539DOI10.1080/03610918.2021.1908552
  28. Mansour, M. M., Yousof, H. M., Shehata, W. A. M., Ibrahim, M., 10.22436/jnsa.013.05.01, J. Nonlinear Sci. Appl. 13 (2020), 223-238. (2020) MR4075793DOI10.22436/jnsa.013.05.01
  29. Mohammed, N., Ali, F., 10.1155/2022/7596449, J. Math. 2022 (2022), Article ID 7596449, 7 pages. (2022) MR4529459DOI10.1155/2022/7596449
  30. Moors, J. J. A., 10.2307/2348376, The Statistician 37 (1988), 25-32. (1988) DOI10.2307/2348376
  31. Mostert, P. J., Roux, J. J. J., Bekker, A., Bayes estimators of the lifetime parameters using the compound Rayleigh model, S. Afr. Stat. J. 33 (1999), 117-138. (1999) Zbl0944.62029
  32. Nabeel, M., Ali, S., Shah, I., 10.1002/qre.2921, Quality Reliability Eng. Int. 37 (2021), 3347-3361. (2021) DOI10.1002/qre.2921
  33. Ng, H. K. T., Luo, L., Hu, Y., Duan, F., 10.1080/00949655.2011.591797, J. Stat. Comput. Simulation 82 (2012), 1661-1678. (2012) Zbl1431.62460MR2984568DOI10.1080/00949655.2011.591797
  34. Rahman, M. M., 10.17713/ajs.v51i3.1280, Aust. J. Stat. 51 (2022), 164-177. (2022) DOI10.17713/ajs.v51i3.1280
  35. Ren, J., Gui, W., 10.1007/s00180-020-01021-y, Comput. Stat. 36 (2021), 479-513. (2021) Zbl1505.62336MR4215401DOI10.1007/s00180-020-01021-y
  36. Shatti, R. N., Al-Kinani, I. H., 10.21123/bsj.2023.7962, Baghdad Sci. J. 21 (2024), 146-150. (2024) DOI10.21123/bsj.2023.7962
  37. Shojaee, O., Asadi, M., Finkelstein, M., 10.1007/s00184-021-00818-1, Metrika 84 (2021), 1213-1240. (2021) Zbl1496.62108MR4323163DOI10.1007/s00184-021-00818-1
  38. Shojaee, O., Asadi, M., Finkelstein, M., 10.1017/S0269964821000243, Prob. Eng. Inf. Sci. 36 (2022), 1055-1079. (2022) Zbl1524.62496MR4504699DOI10.1017/S0269964821000243
  39. Shojaee, O., Asadi, M., Finkelstein, M., 10.1080/03610926.2023.2172586, Commun. Stat., Theory Methods 53 (2024), 4062-4084. (2024) Zbl07880501MR4732493DOI10.1080/03610926.2023.2172586
  40. Shojaee, O., Momeni, R., 10.1007/s41096-023-00169-2, J. Indian Soc. Probab. Stat. 24 (2023), 599-621. (2023) DOI10.1007/s41096-023-00169-2
  41. Shojaee, O., Piriaei, H., Babanezhad, M., 10.19139/soic-2310-5070-1359, Stat. Optim. Inf. Comput. 10 (2022), 1056-1071. (2022) MR4492188DOI10.19139/soic-2310-5070-1359
  42. Shojaee, O., Zarei, H., Naruei, F., 10.19139/soic-2310-5070-1709, Stat. Optim. Inf. Comput. 12 (2024), 962-981. (2024) MR4753792DOI10.19139/soic-2310-5070-1709
  43. Sirisha, G., Jayasree, G., 10.53555/eijms.v4i1.18, EPH Int. J. Math. Stat. 3 (2017), 22-28. (2017) DOI10.53555/eijms.v4i1.18
  44. D. M. Stablein, W. H. Carter, Jr., J. W. Novak, 10.1016/0197-2456(81)90005-2, Controlled Clinical Trials 2 (1981), 149-159. (1981) DOI10.1016/0197-2456(81)90005-2
  45. Valiollahi, R., Asgharzadeh, A., Raqab, M. Z., 10.1080/03610926.2011.650265, Commun. Stat., Theory Methods 42 (2013), 4476-4498. (2013) Zbl1282.65017MR3171012DOI10.1080/03610926.2011.650265
  46. Wu, M., Gui, W., 10.3390/sym13060999, Symmetry 13 (2021), Article ID 999, 22 pages. (2021) DOI10.3390/sym13060999
  47. Yahaya, A., Abdullahi, J., Ieren, T. G., 10.5455/sf.66126, J. Pure Appl. Sci. 19 (2019), 126-138. (2019) DOI10.5455/sf.66126

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.