New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications
Applications of Mathematics (2025)
- Issue: 2, page 231-256
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topShojaee, Omid, and Azimi, Reza. "New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications." Applications of Mathematics (2025): 231-256. <http://eudml.org/doc/299986>.
@article{Shojaee2025,
abstract = {Fitting a suitable distribution to the data from a real experiment is a crucial topic in statistics. However, many of the existing distributions cannot account for the effect of environmental conditions on the components under test. Moreover, the components are usually heterogeneous, meaning that they do not share the same distribution. In this article, we aim to obtain a new generalization of the Compound Rayleigh distribution by using mixture models and incorporating the environmental conditions on the components. The new distribution is expected to be a flexible distribution that encompasses some other distributions as special cases. We will also examine the properties and aging criteria of the new distribution. Over the past decades, various methods to estimate the unknown parameters of a statistical distribution have been proposed from the availability of type-II censored data. Thus, we estimate the parameters of the proposed distribution in the presence of type-II censored data using a Monte Carlo simulation study and real data analysis with maximum likelihood, maximum product of spacings, and Bayesian methods. Finally, different methods are compared by calculating the mean square error (MSE) of the resulting estimators.},
author = {Shojaee, Omid, Azimi, Reza},
journal = {Applications of Mathematics},
keywords = {Bayesian estimation; compound Rayleigh distribution; maximum likelihood; maximum product of spacings; Monte Carlo simulation; Rayleigh distribution},
language = {eng},
number = {2},
pages = {231-256},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications},
url = {http://eudml.org/doc/299986},
year = {2025},
}
TY - JOUR
AU - Shojaee, Omid
AU - Azimi, Reza
TI - New generalization of compound Rayleigh distribution: Different estimation methods based on progressive type-II censoring schemes and applications
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 2
SP - 231
EP - 256
AB - Fitting a suitable distribution to the data from a real experiment is a crucial topic in statistics. However, many of the existing distributions cannot account for the effect of environmental conditions on the components under test. Moreover, the components are usually heterogeneous, meaning that they do not share the same distribution. In this article, we aim to obtain a new generalization of the Compound Rayleigh distribution by using mixture models and incorporating the environmental conditions on the components. The new distribution is expected to be a flexible distribution that encompasses some other distributions as special cases. We will also examine the properties and aging criteria of the new distribution. Over the past decades, various methods to estimate the unknown parameters of a statistical distribution have been proposed from the availability of type-II censored data. Thus, we estimate the parameters of the proposed distribution in the presence of type-II censored data using a Monte Carlo simulation study and real data analysis with maximum likelihood, maximum product of spacings, and Bayesian methods. Finally, different methods are compared by calculating the mean square error (MSE) of the resulting estimators.
LA - eng
KW - Bayesian estimation; compound Rayleigh distribution; maximum likelihood; maximum product of spacings; Monte Carlo simulation; Rayleigh distribution
UR - http://eudml.org/doc/299986
ER -
References
top- Al-Babtain, A. A., 10.1016/j.jksus.2020.04.015, J. King Saud Univ. Sci. 32 (2020), 2576-2581. (2020) DOI10.1016/j.jksus.2020.04.015
- Algarni, A., Almarashi, A. M., Abd-Elmougod, G. A., Abo-Eleneen, Z. A., 10.1007/s10910-019-01058-5, J. Math. Chem. 58 (2020), 950-966. (2020) Zbl1439.62212MR4087456DOI10.1007/s10910-019-01058-5
- Ali, S., 10.1016/j.apm.2014.05.039, Appl. Math. Modelling 39 (2015), 515-530. (2015) Zbl1432.62340MR3282592DOI10.1016/j.apm.2014.05.039
- Al-Zahrani, B., Ali, M. A., 10.19139/soic.v2i2.55, Stat. Optim. Inf. Comput. 2 (2014), 147-160. (2014) MR3351377DOI10.19139/soic.v2i2.55
- Asgharzadeh, A., Valiollahi, R., Raqab, M. Z., 10.1080/03610918.2014.964046, Commun. Stat., Simulation Comput. 46 (2017), 379-394. (2017) Zbl1359.62159MR3563501DOI10.1080/03610918.2014.964046
- Balakrishnan, N., Aggarwala, R., 10.1007/978-1-4612-1334-5, Birkhäuser, Boston (2000). (2000) MR1763020DOI10.1007/978-1-4612-1334-5
- Balakrishnan, N., Cramer, E., 10.1007/978-0-8176-4807-7, Statistics for Industry and Technology. Birkhäuser, New York (2014). (2014) Zbl1365.62001MR3309531DOI10.1007/978-0-8176-4807-7
- Barot, D. R., Patel, M. N., 10.1080/03610926.2015.1019140, Commun. Stat., Theory Methods 46 (2017), 1317-1336. (2017) Zbl1360.62032MR3565627DOI10.1080/03610926.2015.1019140
- Bhattacharya, S. K., Tyagi, R. K., 10.1007/BF02863540, Trab. Estad. 5 (1990), 81-92. (1990) Zbl0717.62029DOI10.1007/BF02863540
- Chalabi, I., 10.1080/2150704X.2023.2215894, Remote Sensing Lett. 14 (2023), 433-441. (2023) DOI10.1080/2150704X.2023.2215894
- Chiodo, E., Fantauzzi, M., Mazzanti, G., 10.3390/en15030861, Energies 15 (2022), Article ID 861, 26 pages. (2022) DOI10.3390/en15030861
- Demiray, D., laslan, F. Kızı, 10.1080/00949655.2021.1935947, J. Stat. Comput. Simulation 92 (2022), 159-190. (2022) Zbl07497826MR07497826DOI10.1080/00949655.2021.1935947
- Dey, S., Dey, T., 10.1080/02664763.2014.922165, J. Appl. Stat. 41 (2014), 2557-2576. (2014) Zbl1514.62525MR3262679DOI10.1080/02664763.2014.922165
- Dey, S., Pradhan, B., 10.1016/j.stamet.2013.07.007, Stat. Methodol. 18 (2014), 101-114. (2014) Zbl1486.62263MR3151866DOI10.1016/j.stamet.2013.07.007
- Diamoutene, A., Noureddine, F., Kamsu-Foguem, B., Barro, D., 10.1007/s42405-021-00371-1, Int. J. Aeronaut. Space Sci. 22 (2021), 1222-1234. (2021) DOI10.1007/s42405-021-00371-1
- Dube, M., Krishna, H., Garg, R., 10.1080/00949655.2015.1052440, J. Stat. Comput. Simulation 86 (2016), 1095-1114. (2016) Zbl1510.62409MR3441558DOI10.1080/00949655.2015.1052440
- Fatima, K., Jan, U., Ahmad, S. P., 10.6339/JDS.201807_16(3).0005, J. Data Sci. 16 (2018), 531-548. (2018) DOI10.6339/JDS.201807_16(3).0005
- Feroze, N., Aslam, M., Khan, I. H., Khan, M. H., 10.1007/s00500-020-05285-w, Soft Comput. 25 (2021), 2131-2152. (2021) Zbl1491.62138DOI10.1007/s00500-020-05285-w
- Finkelstein, M., 10.1007/978-1-84800-986-8, Springer, London (2008). (2008) DOI10.1007/978-1-84800-986-8
- Galton, F., Inquiries into Human Faculty and its Development, Macmillan, London (1988). (1988)
- Hamad, A. M., Salman, B. B., 10.1016/j.asej.2021.02.029, Ain Shams Eng. J. 12 (2021), 4037-4044. (2021) DOI10.1016/j.asej.2021.02.029
- Hussein, L. K., Rasheed, H. A., Hussein, I. H., 10.30526/36.2.3044, Ibn Al-Haitham J. Pure Appl. Sci. 36 (2023), 390-406. (2023) DOI10.30526/36.2.3044
- Jain, K., Singla, N., Sharma, S. K., 10.1155/2014/736101, J. Probab. 2014 (2014), Article ID 736101, 11 pages. (2014) MR3115122DOI10.1155/2014/736101
- Karim, R., Hossain, P., Begum, S., Hossain, F., 10.1155/2011/238290, J. Appl. Math. 2011 (2011), Article ID 238290, 17 pages. (2011) Zbl1235.62016MR2852849DOI10.1155/2011/238290
- Kayal, T., Tripathi, Y. M., Kundu, D., Rastogi, M. K., 10.19139/soic-2310-5070-486, Stat. Optim. Inf. Comput. 10 (2022), 627-642. (2022) MR4401418DOI10.19139/soic-2310-5070-486
- Lindley, D. V., 10.1007/BF02888353, Trab. Estad. 31 (1980), 223-245. (1980) Zbl0458.62002MR0638879DOI10.1007/BF02888353
- Ma, J., Wang, L., Tripathi, Y. M., Rastogi, M. K., 10.1080/03610918.2021.1908552, Commun. Stat., Simulation Comput. 52 (2023), 2388-2407. (2023) Zbl07714513MR4602539DOI10.1080/03610918.2021.1908552
- Mansour, M. M., Yousof, H. M., Shehata, W. A. M., Ibrahim, M., 10.22436/jnsa.013.05.01, J. Nonlinear Sci. Appl. 13 (2020), 223-238. (2020) MR4075793DOI10.22436/jnsa.013.05.01
- Mohammed, N., Ali, F., 10.1155/2022/7596449, J. Math. 2022 (2022), Article ID 7596449, 7 pages. (2022) MR4529459DOI10.1155/2022/7596449
- Moors, J. J. A., 10.2307/2348376, The Statistician 37 (1988), 25-32. (1988) DOI10.2307/2348376
- Mostert, P. J., Roux, J. J. J., Bekker, A., Bayes estimators of the lifetime parameters using the compound Rayleigh model, S. Afr. Stat. J. 33 (1999), 117-138. (1999) Zbl0944.62029
- Nabeel, M., Ali, S., Shah, I., 10.1002/qre.2921, Quality Reliability Eng. Int. 37 (2021), 3347-3361. (2021) DOI10.1002/qre.2921
- Ng, H. K. T., Luo, L., Hu, Y., Duan, F., 10.1080/00949655.2011.591797, J. Stat. Comput. Simulation 82 (2012), 1661-1678. (2012) Zbl1431.62460MR2984568DOI10.1080/00949655.2011.591797
- Rahman, M. M., 10.17713/ajs.v51i3.1280, Aust. J. Stat. 51 (2022), 164-177. (2022) DOI10.17713/ajs.v51i3.1280
- Ren, J., Gui, W., 10.1007/s00180-020-01021-y, Comput. Stat. 36 (2021), 479-513. (2021) Zbl1505.62336MR4215401DOI10.1007/s00180-020-01021-y
- Shatti, R. N., Al-Kinani, I. H., 10.21123/bsj.2023.7962, Baghdad Sci. J. 21 (2024), 146-150. (2024) DOI10.21123/bsj.2023.7962
- Shojaee, O., Asadi, M., Finkelstein, M., 10.1007/s00184-021-00818-1, Metrika 84 (2021), 1213-1240. (2021) Zbl1496.62108MR4323163DOI10.1007/s00184-021-00818-1
- Shojaee, O., Asadi, M., Finkelstein, M., 10.1017/S0269964821000243, Prob. Eng. Inf. Sci. 36 (2022), 1055-1079. (2022) Zbl1524.62496MR4504699DOI10.1017/S0269964821000243
- Shojaee, O., Asadi, M., Finkelstein, M., 10.1080/03610926.2023.2172586, Commun. Stat., Theory Methods 53 (2024), 4062-4084. (2024) Zbl07880501MR4732493DOI10.1080/03610926.2023.2172586
- Shojaee, O., Momeni, R., 10.1007/s41096-023-00169-2, J. Indian Soc. Probab. Stat. 24 (2023), 599-621. (2023) DOI10.1007/s41096-023-00169-2
- Shojaee, O., Piriaei, H., Babanezhad, M., 10.19139/soic-2310-5070-1359, Stat. Optim. Inf. Comput. 10 (2022), 1056-1071. (2022) MR4492188DOI10.19139/soic-2310-5070-1359
- Shojaee, O., Zarei, H., Naruei, F., 10.19139/soic-2310-5070-1709, Stat. Optim. Inf. Comput. 12 (2024), 962-981. (2024) MR4753792DOI10.19139/soic-2310-5070-1709
- Sirisha, G., Jayasree, G., 10.53555/eijms.v4i1.18, EPH Int. J. Math. Stat. 3 (2017), 22-28. (2017) DOI10.53555/eijms.v4i1.18
- D. M. Stablein, W. H. Carter, Jr., J. W. Novak, 10.1016/0197-2456(81)90005-2, Controlled Clinical Trials 2 (1981), 149-159. (1981) DOI10.1016/0197-2456(81)90005-2
- Valiollahi, R., Asgharzadeh, A., Raqab, M. Z., 10.1080/03610926.2011.650265, Commun. Stat., Theory Methods 42 (2013), 4476-4498. (2013) Zbl1282.65017MR3171012DOI10.1080/03610926.2011.650265
- Wu, M., Gui, W., 10.3390/sym13060999, Symmetry 13 (2021), Article ID 999, 22 pages. (2021) DOI10.3390/sym13060999
- Yahaya, A., Abdullahi, J., Ieren, T. G., 10.5455/sf.66126, J. Pure Appl. Sci. 19 (2019), 126-138. (2019) DOI10.5455/sf.66126
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.