Certain subclass of alpha-convex bi-univalent functions defined using -derivative operator
Gagandeep Singh; Gurcharanjit Singh
Archivum Mathematicum (2025)
- Issue: 2, page 63-72
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topSingh, Gagandeep, and Singh, Gurcharanjit. "Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator." Archivum Mathematicum (2025): 63-72. <http://eudml.org/doc/299988>.
@article{Singh2025,
abstract = {The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc $E=\left\rbrace z\colon \mid z \mid <1\right\lbrace $ defined with $q$-derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here.},
author = {Singh, Gagandeep, Singh, Gurcharanjit},
journal = {Archivum Mathematicum},
keywords = {analytic functions; bi-univalent functions; alpha-convex functions; coefficient bounds; Fekete-Szegö inequality; $q$-derivative; subordination},
language = {eng},
number = {2},
pages = {63-72},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator},
url = {http://eudml.org/doc/299988},
year = {2025},
}
TY - JOUR
AU - Singh, Gagandeep
AU - Singh, Gurcharanjit
TI - Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator
JO - Archivum Mathematicum
PY - 2025
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 2
SP - 63
EP - 72
AB - The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc $E=\left\rbrace z\colon \mid z \mid <1\right\lbrace $ defined with $q$-derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here.
LA - eng
KW - analytic functions; bi-univalent functions; alpha-convex functions; coefficient bounds; Fekete-Szegö inequality; $q$-derivative; subordination
UR - http://eudml.org/doc/299988
ER -
References
top- Aldweby, H., Darus, M., 10.22436/jmcs.019.01.08, J. Math. Computer Sci. 19 (2019), 58–64. (2019) DOI10.22436/jmcs.019.01.08
- Amourah, A., Frasin, B.A., Al-Hawary, T., Coefficient estimates for a subclass of bi-univalent functions associated with symmetric -derivative operator by means of the Gegenbauer polynomials, Kyungpook Math. J. 62 (2) (2022), 257–269. (2022) MR4448623
- Amourah, A., Frasin, B.A., Seoudy, T.M., 10.3390/math10142462, Mathematics 10 (2022), 10 pp., 2462. (2022) MR4345706DOI10.3390/math10142462
- Aouf, M.K., 10.1155/S0161171287000838, Int. J. Math. Math. Sci. 10 (4) (1987), 733–744. (1987) MR0907789DOI10.1155/S0161171287000838
- Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Mathematical Analysis and its Applications (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Kuwait; February 18-21, 1985, Pergamon Press, Elsevier Science Limited, Oxford, 1988, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2): 70-77, pp. 53–60. (1988) MR0951657
- Bulut, S., 10.1501/Commua1_0000000780, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 66 (1) (2017), 108–114. (2017) MR3611862DOI10.1501/Commua1_0000000780
- Duren, P.L., Univalent Functions, Grundlehren der Mathematishen Wissenschaften, Springer, New York, 1983. (1983) Zbl0514.30001MR0708494
- Frasin, B.A., Subordination results for a class of analytic functions defined by a linear operator, J. Inequ. Pure Appl. Math. 7 (4) (2006), 7 pp., Article 134. (2006) MR2268588
- Frasin, B.A., Aouf, M.K., 10.1016/j.aml.2011.03.048, Appl. Math. Lett. 24 (2011), 1569–1573. (2011) MR2803711DOI10.1016/j.aml.2011.03.048
- Jackson, F.H., 10.1017/S0080456800002751, Trans. Royal Soc. Edinburgh 46 (1908), 253–281. (1908) DOI10.1017/S0080456800002751
- Jackson, F.H., On -definite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193–203. (1910)
- Janowski, W., 10.4064/ap-28-3-297-326, Ann. Pol. Math. 28 (1973), 297–326. (1973) MR0328059DOI10.4064/ap-28-3-297-326
- Lewin, M., 10.1090/S0002-9939-1967-0206255-1, Proc. Amer. Math. Soc. 18 (1967), 63–68. (1967) MR0206255DOI10.1090/S0002-9939-1967-0206255-1
- Li, X.F., Wang, A.P., Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (30) (2012), 1495–1504. (2012) MR2967369
- Madian, S.M., 10.3934/math.2022053, AIMS Math. 7 (1) (2021), 903–914. (2021) MR4332416DOI10.3934/math.2022053
- Magesh, N., 10.1016/j.mcm.2011.03.028, Math. Comp. Modelling 54 (1–2) (2011), 803–814. (2011) MR2801933DOI10.1016/j.mcm.2011.03.028
- Mocanu, P.T., Une propriete de convexite géenéralisée dans la théorie de la représentation conforme, Mathematica (CLUJ) 11 (34) (1969), 127–133. (1969) MR0273000
- Páll-Szabó, A.O., Oros, G.I., 10.3390/math8071110, Mathematics 8 (2020), 1110. (2020) DOI10.3390/math8071110
- Polatoglu, Y., Bolkal, M., Sen, A., Yavuz, E., A study on the generalization of Janowski function in the unit disc, Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. 22 (2006), 27–31. (2006) MR2216764
- Rahmatan, H., Shokri, A., Ahmad, H., Botmart, T., Subordination method for the estimation of certain subclass of analytic functions defined by the -derivative operator, J. Funct. Spaces, 9 pages, Article Id. 5078060. MR4429892
- Seoudy, T.M., Aouf, M.K., 10.7153/jmi-10-11, J. Math. Inequal. 10 (2016), 135–145. (2016) MR3455309DOI10.7153/jmi-10-11
- Singh, Gagandeep, Coefficient estimates for bi-univalent functions with respect to symmetric points, J. Nonlinear Funct. Anal. 1 (2013), 1–9. (2013)
- Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, Certain subclasses of Sakaguchi-type bi-univalent functions, Ganita 69 (2) (2019), 45–55. (2019) MR4060858
- Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, 10.58250/jnanabha.2020.50108, Jnanabha 50 (1) (2020), 65–71. (2020) MR3962610DOI10.58250/jnanabha.2020.50108
- Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, 10.2478/gm-2020-0010, General Mathematics 28 (1) (2020), 125–140. (2020) MR3962610DOI10.2478/gm-2020-0010
- Sivapalan, J., Magesh, N., Murthy, S., 10.26637/MJM0802/0042, Malaya J. Mat. 8 (2) (2020), 565–569. (2020) MR4112566DOI10.26637/MJM0802/0042
- Srivastava, H.M., Mishra, A.K., Gochhayat, P., 10.1016/j.aml.2011.11.013, Appl. Math. Lett. 25 (2012), 990–994. (2012) MR2902367DOI10.1016/j.aml.2011.11.013
- Srivastava, H.M., Sümer, S., 10.1016/j.aml.2007.02.032, Appl. Math. Lett. 21 (4) (2008), 394–399. (2008) MR2406520DOI10.1016/j.aml.2007.02.032
- Toklu, E., A new subclass of bi-univalent functions defined by -derivative, TWMS J. App. Engg. Math. 9 (2019), 84–90. (2019)
- Venkatesan, M., Kaliappan, V., New subclasses of bi-univalent functions associated with -calculus operator, Int. J. Nonlinear Anal. Appl. 13 (2) (2022), 2141–2149. (2022)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.