Certain subclass of alpha-convex bi-univalent functions defined using q -derivative operator

Gagandeep Singh; Gurcharanjit Singh

Archivum Mathematicum (2025)

  • Issue: 2, page 63-72
  • ISSN: 0044-8753

Abstract

top
The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc E = z : z < 1 defined with q -derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here.

How to cite

top

Singh, Gagandeep, and Singh, Gurcharanjit. "Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator." Archivum Mathematicum (2025): 63-72. <http://eudml.org/doc/299988>.

@article{Singh2025,
abstract = {The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc $E=\left\rbrace z\colon \mid z \mid <1\right\lbrace $ defined with $q$-derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here.},
author = {Singh, Gagandeep, Singh, Gurcharanjit},
journal = {Archivum Mathematicum},
keywords = {analytic functions; bi-univalent functions; alpha-convex functions; coefficient bounds; Fekete-Szegö inequality; $q$-derivative; subordination},
language = {eng},
number = {2},
pages = {63-72},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator},
url = {http://eudml.org/doc/299988},
year = {2025},
}

TY - JOUR
AU - Singh, Gagandeep
AU - Singh, Gurcharanjit
TI - Certain subclass of alpha-convex bi-univalent functions defined using $q$-derivative operator
JO - Archivum Mathematicum
PY - 2025
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 2
SP - 63
EP - 72
AB - The present investigation deals with a new subclass of alpha-convex bi-univalent functions in the unit disc $E=\left\rbrace z\colon \mid z \mid <1\right\lbrace $ defined with $q$-derivative operator. Bounds for the first two coefficients and Fekete-Szegö inequality are established for this class. Many known results follow as consequences of the results derived here.
LA - eng
KW - analytic functions; bi-univalent functions; alpha-convex functions; coefficient bounds; Fekete-Szegö inequality; $q$-derivative; subordination
UR - http://eudml.org/doc/299988
ER -

References

top
  1. Aldweby, H., Darus, M., 10.22436/jmcs.019.01.08, J. Math. Computer Sci. 19 (2019), 58–64. (2019) DOI10.22436/jmcs.019.01.08
  2. Amourah, A., Frasin, B.A., Al-Hawary, T., Coefficient estimates for a subclass of bi-univalent functions associated with symmetric q -derivative operator by means of the Gegenbauer polynomials, Kyungpook Math. J. 62 (2) (2022), 257–269. (2022) MR4448623
  3. Amourah, A., Frasin, B.A., Seoudy, T.M., 10.3390/math10142462, Mathematics 10 (2022), 10 pp., 2462. (2022) MR4345706DOI10.3390/math10142462
  4. Aouf, M.K., 10.1155/S0161171287000838, Int. J. Math. Math. Sci. 10 (4) (1987), 733–744. (1987) MR0907789DOI10.1155/S0161171287000838
  5. Brannan, D.A., Taha, T.S., On some classes of bi-univalent functions, Mathematical Analysis and its Applications (Mazhar, S.M., Hamoni, A., Faour, N.S., eds.), KFAS Proceedings Series, vol. 3, Kuwait; February 18-21, 1985, Pergamon Press, Elsevier Science Limited, Oxford, 1988, See also Studia Univ. Babes-Bolyai Math., 1986, 31(2): 70-77, pp. 53–60. (1988) MR0951657
  6. Bulut, S., 10.1501/Commua1_0000000780, Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 66 (1) (2017), 108–114. (2017) MR3611862DOI10.1501/Commua1_0000000780
  7. Duren, P.L., Univalent Functions, Grundlehren der Mathematishen Wissenschaften, Springer, New York, 1983. (1983) Zbl0514.30001MR0708494
  8. Frasin, B.A., Subordination results for a class of analytic functions defined by a linear operator, J. Inequ. Pure Appl. Math. 7 (4) (2006), 7 pp., Article 134. (2006) MR2268588
  9. Frasin, B.A., Aouf, M.K., 10.1016/j.aml.2011.03.048, Appl. Math. Lett. 24 (2011), 1569–1573. (2011) MR2803711DOI10.1016/j.aml.2011.03.048
  10. Jackson, F.H., 10.1017/S0080456800002751, Trans. Royal Soc. Edinburgh 46 (1908), 253–281. (1908) DOI10.1017/S0080456800002751
  11. Jackson, F.H., On q -definite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193–203. (1910) 
  12. Janowski, W., 10.4064/ap-28-3-297-326, Ann. Pol. Math. 28 (1973), 297–326. (1973) MR0328059DOI10.4064/ap-28-3-297-326
  13. Lewin, M., 10.1090/S0002-9939-1967-0206255-1, Proc. Amer. Math. Soc. 18 (1967), 63–68. (1967) MR0206255DOI10.1090/S0002-9939-1967-0206255-1
  14. Li, X.F., Wang, A.P., Two new subclasses of bi-univalent functions, Int. Math. Forum 7 (30) (2012), 1495–1504. (2012) MR2967369
  15. Madian, S.M., 10.3934/math.2022053, AIMS Math. 7 (1) (2021), 903–914. (2021) MR4332416DOI10.3934/math.2022053
  16. Magesh, N., 10.1016/j.mcm.2011.03.028, Math. Comp. Modelling 54 (1–2) (2011), 803–814. (2011) MR2801933DOI10.1016/j.mcm.2011.03.028
  17. Mocanu, P.T., Une propriete de convexite géenéralisée dans la théorie de la représentation conforme, Mathematica (CLUJ) 11 (34) (1969), 127–133. (1969) MR0273000
  18. Páll-Szabó, A.O., Oros, G.I., 10.3390/math8071110, Mathematics 8 (2020), 1110. (2020) DOI10.3390/math8071110
  19. Polatoglu, Y., Bolkal, M., Sen, A., Yavuz, E., A study on the generalization of Janowski function in the unit disc, Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. 22 (2006), 27–31. (2006) MR2216764
  20. Rahmatan, H., Shokri, A., Ahmad, H., Botmart, T., Subordination method for the estimation of certain subclass of analytic functions defined by the q -derivative operator, J. Funct. Spaces, 9 pages, Article Id. 5078060. MR4429892
  21. Seoudy, T.M., Aouf, M.K., 10.7153/jmi-10-11, J. Math. Inequal. 10 (2016), 135–145. (2016) MR3455309DOI10.7153/jmi-10-11
  22. Singh, Gagandeep, Coefficient estimates for bi-univalent functions with respect to symmetric points, J. Nonlinear Funct. Anal. 1 (2013), 1–9. (2013) 
  23. Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, Certain subclasses of Sakaguchi-type bi-univalent functions, Ganita 69 (2) (2019), 45–55. (2019) MR4060858
  24. Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, 10.58250/jnanabha.2020.50108, Jnanabha 50 (1) (2020), 65–71. (2020) MR3962610DOI10.58250/jnanabha.2020.50108
  25. Singh, Gurmeet, Singh, Gagandeep, Singh, Gurcharanjit, 10.2478/gm-2020-0010, General Mathematics 28 (1) (2020), 125–140. (2020) MR3962610DOI10.2478/gm-2020-0010
  26. Sivapalan, J., Magesh, N., Murthy, S., 10.26637/MJM0802/0042, Malaya J. Mat. 8 (2) (2020), 565–569. (2020) MR4112566DOI10.26637/MJM0802/0042
  27. Srivastava, H.M., Mishra, A.K., Gochhayat, P., 10.1016/j.aml.2011.11.013, Appl. Math. Lett. 25 (2012), 990–994. (2012) MR2902367DOI10.1016/j.aml.2011.11.013
  28. Srivastava, H.M., Sümer, S., 10.1016/j.aml.2007.02.032, Appl. Math. Lett. 21 (4) (2008), 394–399. (2008) MR2406520DOI10.1016/j.aml.2007.02.032
  29. Toklu, E., A new subclass of bi-univalent functions defined by q -derivative, TWMS J. App. Engg. Math. 9 (2019), 84–90. (2019) 
  30. Venkatesan, M., Kaliappan, V., New subclasses of bi-univalent functions associated with q -calculus operator, Int. J. Nonlinear Anal. Appl. 13 (2) (2022), 2141–2149. (2022) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.