Some lower bounds for the quotients of normalized error function and their partial sums

Basem Aref Frasin

Archivum Mathematicum (2025)

  • Issue: 2, page 73-83
  • ISSN: 0044-8753

Abstract

top
The purpose of the present paper is to determine lower bounds for k f ( z ) ( k f ) m ( z ) , ( k f ) m ( z ) k f ( z ) , k ' f ( z ) ( k f ) m ' ( z ) and ( k f ) m ' ( z ) k ' f ( z ) , where k f is the generalized normalized error function of the form k f z = z + n = 2 - 1 n - 1 ( n - 1 k + 1 ) n - 1 ! z n and ( k f ) m its partial sum. Furthermore, we give lower bounds for 𝕀 k f ( z ) ( 𝕀 k f ) m ( z ) and ( 𝕀 k f ) m ( z ) 𝕀 k f ( z ) , where 𝕀 k f is the Alexander transform of k f . Several examples of the main results are also considered.

How to cite

top

Frasin, Basem Aref. "Some lower bounds for the quotients of normalized error function and their partial sums." Archivum Mathematicum (2025): 73-83. <http://eudml.org/doc/299993>.

@article{Frasin2025,
abstract = {The purpose of the present paper is to determine lower bounds for $\mathfrak \{R\}\left\rbrace \frac\{\mathcal \{E\}_\{k\}f(z)\}\{(\mathcal \{E\}_\{k\}f)_\{m\}(z)\}\right\lbrace $, $\mathfrak \{R\}\left\rbrace \frac\{(\mathcal \{E\}_\{k\}f)_\{m\}(z)\}\{\mathcal \{E\}_\{k\}f(z)\}\right\lbrace , \mathfrak \{R\}\left\rbrace \frac\{\mathcal \{E\}_\{k\}^\{\prime \}f(z)\}\{(\mathcal \{E\}_\{k\}f)_\{m\}^\{\prime \}(z)\}\right\lbrace $ and $\mathfrak \{R\}\left\rbrace \frac\{(\mathcal \{E\}_\{k\}f)_\{m\}^\{\prime \}(z)\}\{\mathcal \{E\}_\{k\}^\{\prime \}f(z)\}\right\lbrace $, where $\mathcal \{E\}_\{k\}f$ is the generalized normalized error function of the form $\mathcal \{E\}_\{k\}f\left( z\right) =z+\sum _\{n=2\}^\{\infty \}\frac\{\left( -1\right) ^\{n-1\}\}\{(\left( n-1\right) k+1)\left( n-1\right) !\}z^\{n\}$ and $(\mathcal \{E\}_\{k\}f)_\{m\}$ its partial sum. Furthermore, we give lower bounds for $\mathfrak \{R\}\left\rbrace \frac\{\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] (z)\}\{(\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] )_\{m\}(z)\}\right\lbrace $ and $\mathfrak \{R\}\left\rbrace \frac\{(\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] )_\{m\}(z)\}\{\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] (z)\}\right\lbrace $, where $\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] $ is the Alexander transform of $\mathcal \{E\}_\{k\}f$. Several examples of the main results are also considered.},
author = {Frasin, Basem Aref},
journal = {Archivum Mathematicum},
keywords = {partial sums; analytic functions; generalized error function},
language = {eng},
number = {2},
pages = {73-83},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some lower bounds for the quotients of normalized error function and their partial sums},
url = {http://eudml.org/doc/299993},
year = {2025},
}

TY - JOUR
AU - Frasin, Basem Aref
TI - Some lower bounds for the quotients of normalized error function and their partial sums
JO - Archivum Mathematicum
PY - 2025
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 2
SP - 73
EP - 83
AB - The purpose of the present paper is to determine lower bounds for $\mathfrak {R}\left\rbrace \frac{\mathcal {E}_{k}f(z)}{(\mathcal {E}_{k}f)_{m}(z)}\right\lbrace $, $\mathfrak {R}\left\rbrace \frac{(\mathcal {E}_{k}f)_{m}(z)}{\mathcal {E}_{k}f(z)}\right\lbrace , \mathfrak {R}\left\rbrace \frac{\mathcal {E}_{k}^{\prime }f(z)}{(\mathcal {E}_{k}f)_{m}^{\prime }(z)}\right\lbrace $ and $\mathfrak {R}\left\rbrace \frac{(\mathcal {E}_{k}f)_{m}^{\prime }(z)}{\mathcal {E}_{k}^{\prime }f(z)}\right\lbrace $, where $\mathcal {E}_{k}f$ is the generalized normalized error function of the form $\mathcal {E}_{k}f\left( z\right) =z+\sum _{n=2}^{\infty }\frac{\left( -1\right) ^{n-1}}{(\left( n-1\right) k+1)\left( n-1\right) !}z^{n}$ and $(\mathcal {E}_{k}f)_{m}$ its partial sum. Furthermore, we give lower bounds for $\mathfrak {R}\left\rbrace \frac{\mathbb {I}\left[ \mathcal {E}_{k}f\right] (z)}{(\mathbb {I}\left[ \mathcal {E}_{k}f\right] )_{m}(z)}\right\lbrace $ and $\mathfrak {R}\left\rbrace \frac{(\mathbb {I}\left[ \mathcal {E}_{k}f\right] )_{m}(z)}{\mathbb {I}\left[ \mathcal {E}_{k}f\right] (z)}\right\lbrace $, where $\mathbb {I}\left[ \mathcal {E}_{k}f\right] $ is the Alexander transform of $\mathcal {E}_{k}f$. Several examples of the main results are also considered.
LA - eng
KW - partial sums; analytic functions; generalized error function
UR - http://eudml.org/doc/299993
ER -

References

top
  1. Abramowitz, M., Stegun, I.A., Handbook of Mathematical functions with formulas, Graphs and Matematical Tables, Dorer Publications Inc., New York, 1965. (1965) MR0415956
  2. Aktaş, İ., On partial sums of normalized error functions, GÜFBED/GUSTIJ 9 (3) (2019), 501–504. (2019) 
  3. Aktaş, İ., Orhan, H., 10.7153/jca-09-13, J. Class. Anal. 9 (2) (2016), 127–135. (2016) MR3588361DOI10.7153/jca-09-13
  4. Alexander, J.W., 10.2307/2007212, Ann. of Math. 17 (1915), 12–22. (1915) MR1503516DOI10.2307/2007212
  5. Alzer, H., 10.1007/s10444-009-9139-2, Adv. Comput. Math. 33 (2010), 349–379. (2010) MR2718103DOI10.1007/s10444-009-9139-2
  6. C. Ramachandran, L. Vanitha, Kanas, S., 10.1515/ms-2017-0107, Math. Slovaca 68 (2018), 361–368. (2018) MR3783390DOI10.1515/ms-2017-0107
  7. Coman, D., The radius of starlikeness for error function, Stud. Univ. Babes-Bolyai Math. 36 (1991), 13–16. (1991) MR1280904
  8. Din, M., Raza, M., Yagmur, N., Malik, S.N., On partial sums of Wright functions, U.P.B. Sci. Bull., Series A 80 (2) (2018), 79–90. (2018) MR3819389
  9. Elbert, A., Laforgia, A., 10.1007/s11075-008-9186-7, Numer. Algorithms 49 (2008), 153–157. (2008) MR2457095DOI10.1007/s11075-008-9186-7
  10. Frasin, B.A., Partial sums of certain analytic and univalent functions,, Acta Mathematica Academiae Paedagogicae Nyí regyháziensis 21 (2) (2005), 135–145. (2005) MR2162609
  11. Frasin, B.A., 10.1016/j.aml.2007.08.002, Appl. Math. Lett. 21 (2008), 135–741. (2008) MR2423054DOI10.1016/j.aml.2007.08.002
  12. Frasin, B.A., Cotîrlă, L.-I., 10.3390/axioms12050441, Axioms (2075-1680). 12 (5) (2023), 12 p. (2023) DOI10.3390/axioms12050441
  13. Frasin, B.A, Murugusundaramoorthy, G., Partial sum of certain analytic functions, Mathematica 5 3 (76) (2011), 131–142. (2011) MR2933022
  14. Goodman, A.W., Univalent Functions. Vol. I, Mariner Publishing Company, Inc., Tampa, FL, 1983. (1983) MR0704184
  15. Kazımoğlu, S., Partial sums of the Miller-Ross function, Turkish J. Sci. 6 (3) (2021), 167–173. (2021) 
  16. Lin, L.J., Owa, S., 10.1006/jmaa.1997.5549, J. Math. Anal. Appl. 213 (2) (1997), 444–454. (1997) MR1470862DOI10.1006/jmaa.1997.5549
  17. Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T., 10.24193/subbmath.2022.2.19, Stud. Univ. Babeş-Bolyai Math. 67 (2) (2022), 455–462. (2022) MR4438586DOI10.24193/subbmath.2022.2.19
  18. Orhan, H., Gunes, E., Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions, Indian J. Math. 51 (3) (2009), 489–510. (2009) MR2573800
  19. Owa, S., Srivastava, H.M., Saito, N., 10.1080/00207160412331284042, Int. J. Comput. Math. 81 (10) (2004), 1239–1256. (2004) MR2173456DOI10.1080/00207160412331284042
  20. Sheil-Small, T., 10.1112/blms/2.2.165, Bull. London Math. Soc. 2 (1970), 165–168. (1970) MR0265576DOI10.1112/blms/2.2.165
  21. Silverman, H., 10.1006/jmaa.1997.5361, J. Math. Anal. Appl. 209 (1997), 221–227. (1997) Zbl0894.30010MR1444523DOI10.1006/jmaa.1997.5361
  22. Silvia, E.M., On partial sums of convex functions of order α , Houston J. Math. 11 (1985), 397–404. (1985) MR0808655
  23. Yağmur, N., Orhan, H., 10.18514/MMN.2016.1419, Miskolc Math. Notes 17 (1) (2016), 657–670. (2016) MR3527910DOI10.18514/MMN.2016.1419

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.