Some lower bounds for the quotients of normalized error function and their partial sums
Archivum Mathematicum (2025)
- Issue: 2, page 73-83
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topFrasin, Basem Aref. "Some lower bounds for the quotients of normalized error function and their partial sums." Archivum Mathematicum (2025): 73-83. <http://eudml.org/doc/299993>.
@article{Frasin2025,
abstract = {The purpose of the present paper is to determine lower bounds for $\mathfrak \{R\}\left\rbrace \frac\{\mathcal \{E\}_\{k\}f(z)\}\{(\mathcal \{E\}_\{k\}f)_\{m\}(z)\}\right\lbrace $, $\mathfrak \{R\}\left\rbrace \frac\{(\mathcal \{E\}_\{k\}f)_\{m\}(z)\}\{\mathcal \{E\}_\{k\}f(z)\}\right\lbrace , \mathfrak \{R\}\left\rbrace \frac\{\mathcal \{E\}_\{k\}^\{\prime \}f(z)\}\{(\mathcal \{E\}_\{k\}f)_\{m\}^\{\prime \}(z)\}\right\lbrace $ and $\mathfrak \{R\}\left\rbrace \frac\{(\mathcal \{E\}_\{k\}f)_\{m\}^\{\prime \}(z)\}\{\mathcal \{E\}_\{k\}^\{\prime \}f(z)\}\right\lbrace $, where $\mathcal \{E\}_\{k\}f$ is the generalized normalized error function of the form $\mathcal \{E\}_\{k\}f\left( z\right) =z+\sum _\{n=2\}^\{\infty \}\frac\{\left( -1\right) ^\{n-1\}\}\{(\left( n-1\right) k+1)\left( n-1\right) !\}z^\{n\}$ and $(\mathcal \{E\}_\{k\}f)_\{m\}$ its partial sum. Furthermore, we give lower bounds for $\mathfrak \{R\}\left\rbrace \frac\{\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] (z)\}\{(\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] )_\{m\}(z)\}\right\lbrace $ and $\mathfrak \{R\}\left\rbrace \frac\{(\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] )_\{m\}(z)\}\{\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] (z)\}\right\lbrace $, where $\mathbb \{I\}\left[ \mathcal \{E\}_\{k\}f\right] $ is the Alexander transform of $\mathcal \{E\}_\{k\}f$. Several examples of the main results are also considered.},
author = {Frasin, Basem Aref},
journal = {Archivum Mathematicum},
keywords = {partial sums; analytic functions; generalized error function},
language = {eng},
number = {2},
pages = {73-83},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some lower bounds for the quotients of normalized error function and their partial sums},
url = {http://eudml.org/doc/299993},
year = {2025},
}
TY - JOUR
AU - Frasin, Basem Aref
TI - Some lower bounds for the quotients of normalized error function and their partial sums
JO - Archivum Mathematicum
PY - 2025
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
IS - 2
SP - 73
EP - 83
AB - The purpose of the present paper is to determine lower bounds for $\mathfrak {R}\left\rbrace \frac{\mathcal {E}_{k}f(z)}{(\mathcal {E}_{k}f)_{m}(z)}\right\lbrace $, $\mathfrak {R}\left\rbrace \frac{(\mathcal {E}_{k}f)_{m}(z)}{\mathcal {E}_{k}f(z)}\right\lbrace , \mathfrak {R}\left\rbrace \frac{\mathcal {E}_{k}^{\prime }f(z)}{(\mathcal {E}_{k}f)_{m}^{\prime }(z)}\right\lbrace $ and $\mathfrak {R}\left\rbrace \frac{(\mathcal {E}_{k}f)_{m}^{\prime }(z)}{\mathcal {E}_{k}^{\prime }f(z)}\right\lbrace $, where $\mathcal {E}_{k}f$ is the generalized normalized error function of the form $\mathcal {E}_{k}f\left( z\right) =z+\sum _{n=2}^{\infty }\frac{\left( -1\right) ^{n-1}}{(\left( n-1\right) k+1)\left( n-1\right) !}z^{n}$ and $(\mathcal {E}_{k}f)_{m}$ its partial sum. Furthermore, we give lower bounds for $\mathfrak {R}\left\rbrace \frac{\mathbb {I}\left[ \mathcal {E}_{k}f\right] (z)}{(\mathbb {I}\left[ \mathcal {E}_{k}f\right] )_{m}(z)}\right\lbrace $ and $\mathfrak {R}\left\rbrace \frac{(\mathbb {I}\left[ \mathcal {E}_{k}f\right] )_{m}(z)}{\mathbb {I}\left[ \mathcal {E}_{k}f\right] (z)}\right\lbrace $, where $\mathbb {I}\left[ \mathcal {E}_{k}f\right] $ is the Alexander transform of $\mathcal {E}_{k}f$. Several examples of the main results are also considered.
LA - eng
KW - partial sums; analytic functions; generalized error function
UR - http://eudml.org/doc/299993
ER -
References
top- Abramowitz, M., Stegun, I.A., Handbook of Mathematical functions with formulas, Graphs and Matematical Tables, Dorer Publications Inc., New York, 1965. (1965) MR0415956
- Aktaş, İ., On partial sums of normalized error functions, GÜFBED/GUSTIJ 9 (3) (2019), 501–504. (2019)
- Aktaş, İ., Orhan, H., 10.7153/jca-09-13, J. Class. Anal. 9 (2) (2016), 127–135. (2016) MR3588361DOI10.7153/jca-09-13
- Alexander, J.W., 10.2307/2007212, Ann. of Math. 17 (1915), 12–22. (1915) MR1503516DOI10.2307/2007212
- Alzer, H., 10.1007/s10444-009-9139-2, Adv. Comput. Math. 33 (2010), 349–379. (2010) MR2718103DOI10.1007/s10444-009-9139-2
- C. Ramachandran, L. Vanitha, Kanas, S., 10.1515/ms-2017-0107, Math. Slovaca 68 (2018), 361–368. (2018) MR3783390DOI10.1515/ms-2017-0107
- Coman, D., The radius of starlikeness for error function, Stud. Univ. Babes-Bolyai Math. 36 (1991), 13–16. (1991) MR1280904
- Din, M., Raza, M., Yagmur, N., Malik, S.N., On partial sums of Wright functions, U.P.B. Sci. Bull., Series A 80 (2) (2018), 79–90. (2018) MR3819389
- Elbert, A., Laforgia, A., 10.1007/s11075-008-9186-7, Numer. Algorithms 49 (2008), 153–157. (2008) MR2457095DOI10.1007/s11075-008-9186-7
- Frasin, B.A., Partial sums of certain analytic and univalent functions,, Acta Mathematica Academiae Paedagogicae Nyí regyháziensis 21 (2) (2005), 135–145. (2005) MR2162609
- Frasin, B.A., 10.1016/j.aml.2007.08.002, Appl. Math. Lett. 21 (2008), 135–741. (2008) MR2423054DOI10.1016/j.aml.2007.08.002
- Frasin, B.A., Cotîrlă, L.-I., 10.3390/axioms12050441, Axioms (2075-1680). 12 (5) (2023), 12 p. (2023) DOI10.3390/axioms12050441
- Frasin, B.A, Murugusundaramoorthy, G., Partial sum of certain analytic functions, Mathematica 5 3 (76) (2011), 131–142. (2011) MR2933022
- Goodman, A.W., Univalent Functions. Vol. I, Mariner Publishing Company, Inc., Tampa, FL, 1983. (1983) MR0704184
- Kazımoğlu, S., Partial sums of the Miller-Ross function, Turkish J. Sci. 6 (3) (2021), 167–173. (2021)
- Lin, L.J., Owa, S., 10.1006/jmaa.1997.5549, J. Math. Anal. Appl. 213 (2) (1997), 444–454. (1997) MR1470862DOI10.1006/jmaa.1997.5549
- Mohammed, N.H., Cho, N.E., Adegani, E.A., Bulboaca, T., 10.24193/subbmath.2022.2.19, Stud. Univ. Babeş-Bolyai Math. 67 (2) (2022), 455–462. (2022) MR4438586DOI10.24193/subbmath.2022.2.19
- Orhan, H., Gunes, E., Neighborhoods and partial sums of analytic functions based on Gaussian hypergeometric functions, Indian J. Math. 51 (3) (2009), 489–510. (2009) MR2573800
- Owa, S., Srivastava, H.M., Saito, N., 10.1080/00207160412331284042, Int. J. Comput. Math. 81 (10) (2004), 1239–1256. (2004) MR2173456DOI10.1080/00207160412331284042
- Sheil-Small, T., 10.1112/blms/2.2.165, Bull. London Math. Soc. 2 (1970), 165–168. (1970) MR0265576DOI10.1112/blms/2.2.165
- Silverman, H., 10.1006/jmaa.1997.5361, J. Math. Anal. Appl. 209 (1997), 221–227. (1997) Zbl0894.30010MR1444523DOI10.1006/jmaa.1997.5361
- Silvia, E.M., On partial sums of convex functions of order , Houston J. Math. 11 (1985), 397–404. (1985) MR0808655
- Yağmur, N., Orhan, H., 10.18514/MMN.2016.1419, Miskolc Math. Notes 17 (1) (2016), 657–670. (2016) MR3527910DOI10.18514/MMN.2016.1419
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.