Existence of regular time-periodic solutions for a class of non-Newtonian double-diffusive convection system
Applications of Mathematics (2025)
- Issue: 3, page 387-411
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWu, Qiong, and Wang, Changjia. "Existence of regular time-periodic solutions for a class of non-Newtonian double-diffusive convection system." Applications of Mathematics (2025): 387-411. <http://eudml.org/doc/299994>.
@article{Wu2025,
abstract = {We investigate a system of partial differential equations that models the motion of an incompressible double-diffusion convection fluid. The additional stress tensor is generated by a potential with $p$-structure. In a three-dimensional periodic setting and $p\in [\frac\{5\}\{3\},2)$, we employ a regularized approximation scheme in conjunction with the Galerkin method to establish the existence of regular solutions, provided that the forcing term is properly small. Furthermore, we demonstrate the existence of periodic regular solutions with period $T$ when the external force exhibits periodicity in time with the same period $T$.},
author = {Wu, Qiong, Wang, Changjia},
journal = {Applications of Mathematics},
keywords = {double-diffusive convection fluid; non-Newtonian; periodic regular solution},
language = {eng},
number = {3},
pages = {387-411},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of regular time-periodic solutions for a class of non-Newtonian double-diffusive convection system},
url = {http://eudml.org/doc/299994},
year = {2025},
}
TY - JOUR
AU - Wu, Qiong
AU - Wang, Changjia
TI - Existence of regular time-periodic solutions for a class of non-Newtonian double-diffusive convection system
JO - Applications of Mathematics
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 3
SP - 387
EP - 411
AB - We investigate a system of partial differential equations that models the motion of an incompressible double-diffusion convection fluid. The additional stress tensor is generated by a potential with $p$-structure. In a three-dimensional periodic setting and $p\in [\frac{5}{3},2)$, we employ a regularized approximation scheme in conjunction with the Galerkin method to establish the existence of regular solutions, provided that the forcing term is properly small. Furthermore, we demonstrate the existence of periodic regular solutions with period $T$ when the external force exhibits periodicity in time with the same period $T$.
LA - eng
KW - double-diffusive convection fluid; non-Newtonian; periodic regular solution
UR - http://eudml.org/doc/299994
ER -
References
top- Abbatiello, A., Maremonti, P., 10.1007/s00021-019-0435-4, J. Math. Fluid Mech. 21 (2019), Article ID 29, 14 pages. (2019) Zbl1416.35177MR3938375DOI10.1007/s00021-019-0435-4
- Adams, R. A., Fournier, J. J. F., 10.1016/s0079-8169(03)x8001-0, Pure and Applied Mathematics 140. Academic Press, Amsterdam (2003). (2003) Zbl1098.46001MR2424078DOI10.1016/s0079-8169(03)x8001-0
- Astarita, G., Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London (1974). (1974)
- Belov, V. Y., Kapitonov, B. V., 10.1007/bf00970307, Sib. Math. J. 24 (1983), 823-833. (1983) Zbl0599.35129MR0731038DOI10.1007/bf00970307
- Chen, F., Guo, B., 10.1080/00036811.2018.1441995, Appl. Anal. 98 (2019), 1724-1740. (2019) Zbl1417.35114MR3955790DOI10.1080/00036811.2018.1441995
- Chen, F., Guo, B., Zeng, L., 10.1002/mma.4895, Math. Methods Appl. Sci. 41 (2018), 4327-4336. (2018) Zbl1397.35201MR3824560DOI10.1002/mma.4895
- Chen, F., Guo, B., Zeng, L., 10.1063/1.5052668, J. Math. Phys. 60 (2019), Article ID 011511, 14 pages. (2019) Zbl1406.76078MR3903541DOI10.1063/1.5052668
- Diening, L., Ebmeyer, C., Růžička, M., 10.1137/05064120x, SIAM J. Numer. Anal. 45 (2007), 457-472. (2007) Zbl1140.65060MR2300281DOI10.1137/05064120x
- Joseph, D. D., 10.1007/978-3-642-80991-0, Springer Tracts in Natural Philosophy 27. Springer, Berlin (1976). (1976) Zbl0345.76022MR0449147DOI10.1007/978-3-642-80991-0
- Lorca, S. A., Rojas-Medar, M. A., Weak solutions for the viscous incompressible chemically active fluids, Rev. Mat. Estat. 14 (1996), 183-199. (1996) Zbl0894.76091MR1465922
- Málek, J., Rajagopal, K. R., 10.1016/s1874-5717(06)80008-3, Evolutionary Equations II Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam (2005), 371-459. (2005) Zbl1095.35027MR2182831DOI10.1016/s1874-5717(06)80008-3
- Moretti, A. C., Rojas-Medar, M. A., Rojas-Medarm, M. D., 10.1016/s0898-1221(02)00148-7, Comput. Math. Appl. 44 (2002), 287-299. (2002) Zbl1179.76015MR1912828DOI10.1016/s0898-1221(02)00148-7
- Nečas, J., Málek, J., Rokyta, M., Růžička, M., 10.1007/978-1-4899-6824-1, Applied Mathematics and Mathematical Computation 13. Chapman & Hall, London (1996). (1996) Zbl0851.35002MR1409366DOI10.1007/978-1-4899-6824-1
- Pedlosky, J., 10.1007/978-1-4684-0071-7, Springer, New York (1979). (1979) Zbl0429.76001DOI10.1007/978-1-4684-0071-7
- Radko, T., 10.1017/cbo9781139034173, Cambridge University Press, Cambridge (2013). (2013) Zbl1301.76001MR3183649DOI10.1017/cbo9781139034173
- Ragusa, M. A., Wu, F., 10.57262/ade026-0708-281, Adv. Differ. Equ. 26 (2021), 281-304. (2021) Zbl1479.35694MR4305007DOI10.57262/ade026-0708-281
- Rojas-Medar, M. A., Lorca, S. A., Global strong solution of the equations for the motion of a chemical active fluid, Mat. Contemp. 8 (1995), 319-335. (1995) Zbl0853.35096MR1330043
- Rojas-Medar, M. A., Lorca, S. A., The equations of a viscous incompressible chemical active fluid I: Uniqueness and existence of the local solutions, Rev. Mat. Apl. 16 (1995), 57-80. (1995) Zbl0849.35101MR1382269
- Rojas-Medar, M. A., Lorca, S. A., The equations of a viscous incompressible chemical active fluid II: Regularity of solutions, Rev. Mat. Apl. 16 (1995), 81-95. (1995) Zbl1126.35350MR1382270
- Wu, F., 10.1007/s40840-019-00828-3, Bull. Malays. Math. Sci. Soc. (2) 43 (2020), 2673-2686. (2020) Zbl1443.76208MR4089665DOI10.1007/s40840-019-00828-3
- Wu, F., 10.1007/s00021-020-0483-9, J. Math. Fluid Mech. 22 (2020), Article ID 24, 9 pages. (2020) Zbl1435.35313MR4085356DOI10.1007/s00021-020-0483-9
- Wu, F., 10.1080/00036811.2023.2260419, Appl. Anal. 103 (2024), 1693-1703. (2024) Zbl1545.35127MR4754792DOI10.1080/00036811.2023.2260419
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.