Weakly irreducible subgroups of
Archivum Mathematicum (2008)
- Volume: 044, Issue: 5, page 341-352
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBezvitnaya, Natalia I.. "Weakly irreducible subgroups of $\mbox{Sp}(1,n+1)$." Archivum Mathematicum 044.5 (2008): 341-352. <http://eudml.org/doc/261051>.
@article{Bezvitnaya2008,
	abstract = {Connected weakly irreducible not irreducible subgroups of $\mbox\{Sp\}(1,n+1)\subset \mbox\{SO\}(4,4n+4)$ that satisfy a certain additional condition are classified. This will be used to classify connected holonomy groups of pseudo-hyper-Kählerian manifolds of index 4.},
	author = {Bezvitnaya, Natalia I.},
	journal = {Archivum Mathematicum},
	keywords = {pseudo-hyper-Kählerian manifold of index 4; weakly irreducible holonomy group; pseudo-hyper-Kählerian manifold of index 4; weakly irreducible holonomy group},
	language = {eng},
	number = {5},
	pages = {341-352},
	publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
	title = {Weakly irreducible subgroups of $\mbox\{Sp\}(1,n+1)$},
	url = {http://eudml.org/doc/261051},
	volume = {044},
	year = {2008},
}
TY  - JOUR
AU  - Bezvitnaya, Natalia I.
TI  - Weakly irreducible subgroups of $\mbox{Sp}(1,n+1)$
JO  - Archivum Mathematicum
PY  - 2008
PB  - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL  - 044
IS  - 5
SP  - 341
EP  - 352
AB  - Connected weakly irreducible not irreducible subgroups of $\mbox{Sp}(1,n+1)\subset \mbox{SO}(4,4n+4)$ that satisfy a certain additional condition are classified. This will be used to classify connected holonomy groups of pseudo-hyper-Kählerian manifolds of index 4.
LA  - eng
KW  - pseudo-hyper-Kählerian manifold of index 4; weakly irreducible holonomy group; pseudo-hyper-Kählerian manifold of index 4; weakly irreducible holonomy group
UR  - http://eudml.org/doc/261051
ER  - 
References
top- Alekseevsky, D. V., Homogeneous Riemannian manifolds of negative curvature, Mat. Sb. (N.S.) 96 (138) (1975), 93–117. (1975) MR0362145
- Ambrose, W., Singer, I. M., 10.1090/S0002-9947-1953-0063739-1, Trans. Amer. Math. Soc. 75 (1953), 428–443. (1953) Zbl0052.18002MR0063739DOI10.1090/S0002-9947-1953-0063739-1
- Berard Bergery, L., Ikemakhen, A., On the holonomy of Lorentzian manifolds, Proc. Sympos. Pure Math. 54 (1993), 27–40. (1993) Zbl0807.53014MR1216527
- Berger, M., Sur les groupers d’holonomie des variétés àconnexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330. (1955) MR0079806
- Besse, A. L., Einstein Manifolds, Springer-Verlag, Berlin-Heidelberg-New York, 1987. (1987) Zbl0613.53001MR0867684
- Bryant, R., Metrics with exceptional holonomy, Ann. of Math. (2) 126 (1987), 525–576. (1987) Zbl0637.53042MR0916718
- Galaev, A. S., Classification of connected holonomy groups for pseudo-Kählerian manifolds of index 2, arXiv:math.DG/0405098.
- Galaev, A. S., Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidian spaces and Lorentzian holonomy groups, Rend. Circ. Mat. Palermo (2) Suppl. 79 (2006), 87–97. (2006) MR2287128
- Galaev, A. S., 10.1142/S0219887806001570, Internat. J. Geom. Meth. Modern Phys. 3 (5, 6) (2006), 1025–1045. (2006) Zbl1112.53039MR2264404DOI10.1142/S0219887806001570
- Joyce, D., Compact manifolds with special holonomy, Oxford University Press, 2000. (2000) Zbl1027.53052MR1787733
- Leistner, T., On the classification of Lorentzian holonomy groups, J. Differential Geom. 76 (3) (2007), 423–484. (2007) Zbl1129.53029MR2331527
- Wu, H., 10.2140/pjm.1967.20.351, Pacific J. Math. 20 (1967), 351–382. (1967) Zbl0149.39603MR0212740DOI10.2140/pjm.1967.20.351
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 