Existence and uniqueness of ( L , ϕ ) -representations of algebras

Andrzej Walendziak

Czechoslovak Mathematical Journal (1996)

  • Volume: 46, Issue: 1, page 35-46
  • ISSN: 0011-4642

How to cite

top

Walendziak, Andrzej. "Existence and uniqueness of $(L,\varphi )$-representations of algebras." Czechoslovak Mathematical Journal 46.1 (1996): 35-46. <http://eudml.org/doc/30286>.

@article{Walendziak1996,
author = {Walendziak, Andrzej},
journal = {Czechoslovak Mathematical Journal},
keywords = {-products; -irredundant representations},
language = {eng},
number = {1},
pages = {35-46},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and uniqueness of $(L,\varphi )$-representations of algebras},
url = {http://eudml.org/doc/30286},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Walendziak, Andrzej
TI - Existence and uniqueness of $(L,\varphi )$-representations of algebras
JO - Czechoslovak Mathematical Journal
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 46
IS - 1
SP - 35
EP - 46
LA - eng
KW - -products; -irredundant representations
UR - http://eudml.org/doc/30286
ER -

References

top
  1. Algebraic Theory of Lattices, Prentice Hall, Englewood Cliffs, New Jersey, (1973). (1973) 
  2. Weak direct product decomposition of algebras, in: Contributions to General Algebra 5, Proc. of Salzburg Conf. 1986, Verlag Holder-Pichler-Tempsky, Wien (1987), 105–121. (1987) MR0930914
  3. General Lattice Theory, Akademie-Verlag, Berlin, 1978. (1978) MR0504338
  4. Universal Algebra, Springer-Verlag, New York, 1979. (1979) MR0538623
  5. Direct, subdirect decompositions and congruence relations, Osaka Math. J. 9 (1957), 87–112. (1957) Zbl0078.01805MR0091248
  6. 10.1002/mana.19690420111, Math. Nachr. 42 (1969), 157–171. (1969) Zbl0207.02901MR0258714DOI10.1002/mana.19690420111
  7. Algebras, Lattices, Varieties, Volume I, Wadsworth Brooks/Cole, Menterey-California, 1987. (1987) MR0883644
  8. Infinite θ -decomposition in modular lattices, in: Universal and Applied Algebra, Proc. of Turawa Symposium 1988, Vorld Sci. Publishing, Teaneck, NJ, (1989), 321–333. (1989) MR1084413
  9. Infinite θ -decompositions in upper continuous lattices, Comment. Math 29 (1990), 313–324. (1990) Zbl0719.06003MR1059137
  10. 10.1007/BF02278036, Period. Math. Hung 23 (1991), 219–226. (1991) MR1152971DOI10.1007/BF02278036
  11. 10.1007/BF01190440, Algebra Universalis 30 (1993), 319–330. (1993) Zbl0788.08002MR1225871DOI10.1007/BF01190440

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.