Existence and uniqueness of ( L , ϕ ) -representations of algebras

Andrzej Walendziak

Czechoslovak Mathematical Journal (1996)

  • Volume: 46, Issue: 1, page 35-46
  • ISSN: 0011-4642

How to cite

top

Walendziak, Andrzej. "Existence and uniqueness of $(L,\varphi )$-representations of algebras." Czechoslovak Mathematical Journal 46.1 (1996): 35-46. <http://eudml.org/doc/30286>.

@article{Walendziak1996,
author = {Walendziak, Andrzej},
journal = {Czechoslovak Mathematical Journal},
keywords = {-products; -irredundant representations},
language = {eng},
number = {1},
pages = {35-46},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and uniqueness of $(L,\varphi )$-representations of algebras},
url = {http://eudml.org/doc/30286},
volume = {46},
year = {1996},
}

TY - JOUR
AU - Walendziak, Andrzej
TI - Existence and uniqueness of $(L,\varphi )$-representations of algebras
JO - Czechoslovak Mathematical Journal
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 46
IS - 1
SP - 35
EP - 46
LA - eng
KW - -products; -irredundant representations
UR - http://eudml.org/doc/30286
ER -

References

top
  1. Algebraic Theory of Lattices, Prentice Hall, Englewood Cliffs, New Jersey, (1973). (1973) 
  2. Weak direct product decomposition of algebras, in: Contributions to General Algebra 5, Proc. of Salzburg Conf. 1986, Verlag Holder-Pichler-Tempsky, Wien (1987), 105–121. (1987) MR0930914
  3. General Lattice Theory, Akademie-Verlag, Berlin, 1978. (1978) MR0504338
  4. Universal Algebra, Springer-Verlag, New York, 1979. (1979) MR0538623
  5. Direct, subdirect decompositions and congruence relations, Osaka Math. J. 9 (1957), 87–112. (1957) Zbl0078.01805MR0091248
  6. 10.1002/mana.19690420111, Math. Nachr. 42 (1969), 157–171. (1969) Zbl0207.02901MR0258714DOI10.1002/mana.19690420111
  7. Algebras, Lattices, Varieties, Volume I, Wadsworth Brooks/Cole, Menterey-California, 1987. (1987) MR0883644
  8. Infinite θ -decomposition in modular lattices, in: Universal and Applied Algebra, Proc. of Turawa Symposium 1988, Vorld Sci. Publishing, Teaneck, NJ, (1989), 321–333. (1989) MR1084413
  9. Infinite θ -decompositions in upper continuous lattices, Comment. Math 29 (1990), 313–324. (1990) Zbl0719.06003MR1059137
  10. 10.1007/BF02278036, Period. Math. Hung 23 (1991), 219–226. (1991) MR1152971DOI10.1007/BF02278036
  11. 10.1007/BF01190440, Algebra Universalis 30 (1993), 319–330. (1993) Zbl0788.08002MR1225871DOI10.1007/BF01190440

NotesEmbed ?

top

You must be logged in to post comments.