Vector-valued pseudo almost periodic functions
Czechoslovak Mathematical Journal (1997)
- Volume: 47, Issue: 3, page 385-394
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Chuan Yi. "Vector-valued pseudo almost periodic functions." Czechoslovak Mathematical Journal 47.3 (1997): 385-394. <http://eudml.org/doc/30370>.
@article{Zhang1997,
abstract = {Vector-valued pseudo almost periodic functions are defined and their properties are investigated. The vector-valued functions contain many known functions as special cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost periodic function is a sum of an almost periodic function and an ergodic perturbation.},
author = {Zhang, Chuan Yi},
journal = {Czechoslovak Mathematical Journal},
keywords = {almost periodic functions pseudo almost periodic functions; pseudo almost periodic functions; pseudo almost periodic functions; ergodic perturbation},
language = {eng},
number = {3},
pages = {385-394},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Vector-valued pseudo almost periodic functions},
url = {http://eudml.org/doc/30370},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Zhang, Chuan Yi
TI - Vector-valued pseudo almost periodic functions
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 3
SP - 385
EP - 394
AB - Vector-valued pseudo almost periodic functions are defined and their properties are investigated. The vector-valued functions contain many known functions as special cases. A unique decomposition theorem is given to show that a vector-valued pseudo almost periodic function is a sum of an almost periodic function and an ergodic perturbation.
LA - eng
KW - almost periodic functions pseudo almost periodic functions; pseudo almost periodic functions; pseudo almost periodic functions; ergodic perturbation
UR - http://eudml.org/doc/30370
ER -
References
top- Almost-Periodic Functions and Functional Equations, Van Nostrand, New York, 1971. (1971) MR0275061
- Analysis on Semigroups: Function Spaces, Compactifications, Representations, Wiley, New York, 1989. (1989) MR0999922
- Almost Periodic Functions, Dover, New York, 1954. (1954) MR0068029
- Almost Periodic Functions, Chelsea, New York, 1951. (1951)
- Almost Periodic Functions, Chelsea, New York, 2nd ed., 1989. (1989) Zbl0672.42008
- 10.1007/BF02559535, Acta Math. 105 (1961), 63–97. (1961) MR0131784DOI10.1007/BF02559535
- Weakly almost periodic vector valued functions, Dissertationes Math. 157 (1979). (1979) MR0524925
- Almost periodic functions and differential equations, Cambridge University Press, New York, 1982. MR0690064
- 10.1112/jlms/s2-22.3.467, J. London Math. Soc. (2) 22 (1980), 467–472. (1980) Zbl0456.43003MR0596325DOI10.1112/jlms/s2-22.3.467
- 10.1002/mana.19881350102, Math. Nachr. 135 (1988), 7–33. (1988) MR0944213DOI10.1002/mana.19881350102
- Integration of asymptotically almost periodic functions and weak asymptotic almost periodicity, Dissertationes Math. 279 (1989). (1989) MR0986113
- Almost-Periodic Functions in Abstract Spaces, Pitman, London, 1985. (1985) Zbl0648.42006MR0790316
- 10.1006/jmaa.1994.1005, J. Math. Anal. Appl. 181 (1994), 62–76. (1994) Zbl0796.34029MR1257954DOI10.1006/jmaa.1994.1005
- 10.1006/jmaa.1995.1189, J. Math. Anal. Appl. 192 (1995), 543–561. (1995) Zbl0826.34040MR1332227DOI10.1006/jmaa.1995.1189
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.