On the non-vanishing of local cohomology modules

Siamak Yassemi

Czechoslovak Mathematical Journal (1997)

  • Volume: 47, Issue: 4, page 585-592
  • ISSN: 0011-4642

Abstract

top
It is shown that for any Artinian modules M , dim M is the greatest integer i such that H 𝔪 i ( M ) 0 .

How to cite

top

Yassemi, Siamak. "On the non-vanishing of local cohomology modules." Czechoslovak Mathematical Journal 47.4 (1997): 585-592. <http://eudml.org/doc/30385>.

@article{Yassemi1997,
abstract = {It is shown that for any Artinian modules $M$, $\dim M^\{\vee \}$ is the greatest integer $i$ such that $\{\mbox\{H\}\}^i_\{\mathfrak \{m\}\}(M^\{\vee \})\ne 0$.},
author = {Yassemi, Siamak},
journal = {Czechoslovak Mathematical Journal},
keywords = {Artinian module; local cohomology; magnitude; Matlis dual},
language = {eng},
number = {4},
pages = {585-592},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the non-vanishing of local cohomology modules},
url = {http://eudml.org/doc/30385},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Yassemi, Siamak
TI - On the non-vanishing of local cohomology modules
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 4
SP - 585
EP - 592
AB - It is shown that for any Artinian modules $M$, $\dim M^{\vee }$ is the greatest integer $i$ such that ${\mbox{H}}^i_{\mathfrak {m}}(M^{\vee })\ne 0$.
LA - eng
KW - Artinian module; local cohomology; magnitude; Matlis dual
UR - http://eudml.org/doc/30385
ER -

References

top
  1. Local Cohomology, Lecture Notes in Math. 41, Springer Verlag, 1967. (1967) MR0224620
  2. A homological theory of complexes of modules, Preprint Series No. 19a & 19b, Dept. of Mathematics, Univ. Copenhagen, 1981. 
  3. Secondary representation of modules over a commutative ring, Symp. Math. XI (1973) 23–43. Zbl0271.13001MR0342506
  4. 10.1093/qmath/23.2.197, Quart. J. Math. (Oxford)(2) 23 (1970), 197–204. (1970) MR0299598DOI10.1093/qmath/23.2.197
  5. 10.1093/qmath/21.4.425, Quart. J. Math. (Oxford) (2) 21 (1970), 425–434. (1970) Zbl0204.06003MR0276217DOI10.1093/qmath/21.4.425
  6. 10.1080/00927879508825288, Comm. Algebra 23 (1995), 1473–1498. (1995) Zbl0832.13004MR1317409DOI10.1080/00927879508825288
  7. 10.1080/00927879508825445, Comm. Algebra 23 (1995), 3993–4008. (1995) Zbl0836.13005MR1351115DOI10.1080/00927879508825445

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.