On positive solutions of quasilinear elliptic systems
Czechoslovak Mathematical Journal (1997)
- Volume: 47, Issue: 4, page 681-687
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCheng, Yuanji. "On positive solutions of quasilinear elliptic systems." Czechoslovak Mathematical Journal 47.4 (1997): 681-687. <http://eudml.org/doc/30391>.
@article{Cheng1997,
abstract = {In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin\{array\}\{ll\}-\Delta \_p u = f(x,u,v), &\quad \text\{in\} \ \Omega , -\Delta \_p v = g(x,u,v), &\quad \text\{in\} \ \Omega , u = v = 0, &\quad \text\{on\} \ \partial \Omega , \end\{array\}\right.\]
where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^\{1,\alpha \}$-domain in $\mathbb \{R\}^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^\{p-1\}$, $ g(x,u,v)=\lambda _2u^\{p-1\}$ and obtain a non-existence result of positive solutions for the general systems.},
author = {Cheng, Yuanji},
journal = {Czechoslovak Mathematical Journal},
keywords = {Eigenvalue problem; Degenerate elliptic operator; Nonlinear systems; Positive solutions; eigenvalue problem; -Laplacian},
language = {eng},
number = {4},
pages = {681-687},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On positive solutions of quasilinear elliptic systems},
url = {http://eudml.org/doc/30391},
volume = {47},
year = {1997},
}
TY - JOUR
AU - Cheng, Yuanji
TI - On positive solutions of quasilinear elliptic systems
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 4
SP - 681
EP - 687
AB - In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin{array}{ll}-\Delta _p u = f(x,u,v), &\quad \text{in} \ \Omega , -\Delta _p v = g(x,u,v), &\quad \text{in} \ \Omega , u = v = 0, &\quad \text{on} \ \partial \Omega , \end{array}\right.\]
where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^{1,\alpha }$-domain in $\mathbb {R}^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^{p-1}$, $ g(x,u,v)=\lambda _2u^{p-1}$ and obtain a non-existence result of positive solutions for the general systems.
LA - eng
KW - Eigenvalue problem; Degenerate elliptic operator; Nonlinear systems; Positive solutions; eigenvalue problem; -Laplacian
UR - http://eudml.org/doc/30391
ER -
References
top- 10.1002/mana.19941650106, Math. Nachr. 165 (1994), 61–77. (1994) Zbl0836.35050MR1261363DOI10.1002/mana.19941650106
- On the existence of radial solutions of a nonlinear elliptic equation on the unit ball, Nonlinear Analysis, TMA, 24:3 (1995), 287–307. (1995) Zbl0819.35050MR1312769
- An eigenvalue problem for a quasilinear elliptic equation, U.U.M.D. Report NO:19, 1994. (1994)
- 10.1080/03605309208820869, Comm. P.D.E. 17 (1992), 923–940. (1992) MR1177298DOI10.1080/03605309208820869
- Positive solutions of quasilinear elliptic systems via blow up, Comm. P.D.E. 18 (1993), 2071-2116. (1993) MR1249135
- Methods of Mathematical Physics II, Interscience, 1953. (1953) MR0065391
- 10.4064/ap-58-2-201-212, Annl. Pol. Math. LVIII.2 (1993), 201–213. (1993) Zbl0791.35014MR1239024DOI10.4064/ap-58-2-201-212
- Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, 1992. (1992)
- Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford, University Press, 1993. (1993) MR1207810
- 10.1137/1032046, SIAM Review 32:2 (1990), 262–288. (1990) MR1056055DOI10.1137/1032046
- 10.1090/S0002-9939-1990-1007505-7, Proc. Amer. Math. Soci. 109 (1990), 157–164. (1990) Zbl0714.35029MR1007505DOI10.1090/S0002-9939-1990-1007505-7
- 10.1137/1024101, SIAM Review 24 (1982), 441–467. (1982) Zbl0511.35033MR0678562DOI10.1137/1024101
- 10.1080/03605309308820923, Comm. P.D.E. 18 (1993), 125–151. (1993) Zbl0816.35027MR1211727DOI10.1080/03605309308820923
- Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equations, Diff Interg. Equa. 5 (1992), 747–767. (1992) MR1167492
- Concavity property of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola. Norm. Pisa 14 (1987), 403–421. (1987) MR0951227
- Variational identities and applications to differential systems, Arch. rational Mech. Anal. 116c (1991), 375–398. (1991) Zbl0796.35059MR1132768
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.