On positive solutions of quasilinear elliptic systems

Yuanji Cheng

Czechoslovak Mathematical Journal (1997)

  • Volume: 47, Issue: 4, page 681-687
  • ISSN: 0011-4642

Abstract

top
In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems - Δ p u = f ( x , u , v ) , in Ω , - Δ p v = g ( x , u , v ) , in Ω , u = v = 0 , on Ω , where - Δ p is the p -Laplace operator, p > 1 and Ω is a C 1 , α -domain in n . We prove an analogue of [7, 16] for the eigenvalue problem with f ( x , u , v ) = λ 1 v p - 1 , g ( x , u , v ) = λ 2 u p - 1 and obtain a non-existence result of positive solutions for the general systems.

How to cite

top

Cheng, Yuanji. "On positive solutions of quasilinear elliptic systems." Czechoslovak Mathematical Journal 47.4 (1997): 681-687. <http://eudml.org/doc/30391>.

@article{Cheng1997,
abstract = {In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin\{array\}\{ll\}-\Delta \_p u = f(x,u,v), &\quad \text\{in\} \ \Omega , -\Delta \_p v = g(x,u,v), &\quad \text\{in\} \ \Omega , u = v = 0, &\quad \text\{on\} \ \partial \Omega , \end\{array\}\right.\] where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^\{1,\alpha \}$-domain in $\mathbb \{R\}^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^\{p-1\}$, $ g(x,u,v)=\lambda _2u^\{p-1\}$ and obtain a non-existence result of positive solutions for the general systems.},
author = {Cheng, Yuanji},
journal = {Czechoslovak Mathematical Journal},
keywords = {Eigenvalue problem; Degenerate elliptic operator; Nonlinear systems; Positive solutions; eigenvalue problem; -Laplacian},
language = {eng},
number = {4},
pages = {681-687},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On positive solutions of quasilinear elliptic systems},
url = {http://eudml.org/doc/30391},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Cheng, Yuanji
TI - On positive solutions of quasilinear elliptic systems
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 4
SP - 681
EP - 687
AB - In this paper, we consider the existence and nonexistence of positive solutions of degenerate elliptic systems \[ \left\rbrace \begin{array}{ll}-\Delta _p u = f(x,u,v), &\quad \text{in} \ \Omega , -\Delta _p v = g(x,u,v), &\quad \text{in} \ \Omega , u = v = 0, &\quad \text{on} \ \partial \Omega , \end{array}\right.\] where $-\Delta _p$ is the $p$-Laplace operator, $p>1$ and $\Omega $ is a $C^{1,\alpha }$-domain in $\mathbb {R}^n$. We prove an analogue of [7, 16] for the eigenvalue problem with $f(x,u,v)=\lambda _1 v^{p-1}$, $ g(x,u,v)=\lambda _2u^{p-1}$ and obtain a non-existence result of positive solutions for the general systems.
LA - eng
KW - Eigenvalue problem; Degenerate elliptic operator; Nonlinear systems; Positive solutions; eigenvalue problem; -Laplacian
UR - http://eudml.org/doc/30391
ER -

References

top
  1. 10.1002/mana.19941650106, Math. Nachr. 165 (1994), 61–77. (1994) Zbl0836.35050MR1261363DOI10.1002/mana.19941650106
  2. On the existence of radial solutions of a nonlinear elliptic equation on the unit ball, Nonlinear Analysis, TMA, 24:3 (1995), 287–307. (1995) Zbl0819.35050MR1312769
  3. An eigenvalue problem for a quasilinear elliptic equation, U.U.M.D. Report NO:19, 1994. (1994) 
  4. 10.1080/03605309208820869, Comm. P.D.E. 17 (1992), 923–940. (1992) MR1177298DOI10.1080/03605309208820869
  5. Positive solutions of quasilinear elliptic systems via blow up, Comm. P.D.E. 18 (1993), 2071-2116. (1993) MR1249135
  6. Methods of Mathematical Physics II, Interscience, 1953. (1953) MR0065391
  7. 10.4064/ap-58-2-201-212, Annl. Pol. Math. LVIII.2 (1993), 201–213. (1993) Zbl0791.35014MR1239024DOI10.4064/ap-58-2-201-212
  8. Elliptic Partial Differential Equations of Second Order, Second edition, Springer-Verlag, 1992. (1992) 
  9. Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford, University Press, 1993. (1993) MR1207810
  10. 10.1137/1032046, SIAM Review 32:2 (1990), 262–288. (1990) MR1056055DOI10.1137/1032046
  11. 10.1090/S0002-9939-1990-1007505-7, Proc. Amer. Math. Soci. 109 (1990), 157–164. (1990) Zbl0714.35029MR1007505DOI10.1090/S0002-9939-1990-1007505-7
  12. 10.1137/1024101, SIAM Review 24 (1982), 441–467. (1982) Zbl0511.35033MR0678562DOI10.1137/1024101
  13. 10.1080/03605309308820923, Comm. P.D.E. 18 (1993), 125–151. (1993) Zbl0816.35027MR1211727DOI10.1080/03605309308820923
  14. Existence and nonexistence of positive solutions of nonlinear elliptic systems and the biharmonic equations, Diff Interg. Equa. 5 (1992), 747–767. (1992) MR1167492
  15. Concavity property of solutions to some degenerate quasilinear elliptic Dirichlet problems, Ann. Scuola. Norm. Pisa 14 (1987), 403–421. (1987) MR0951227
  16. Variational identities and applications to differential systems, Arch. rational Mech. Anal. 116c (1991), 375–398. (1991) Zbl0796.35059MR1132768

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.