A supersolution-subsolution method for nonlinear biharmonic equations in N

Yasuhiro Furusho; Takaŝi Kusano

Czechoslovak Mathematical Journal (1997)

  • Volume: 47, Issue: 4, page 749-768
  • ISSN: 0011-4642

How to cite

top

Furusho, Yasuhiro, and Kusano, Takaŝi. "A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb {R}^N$." Czechoslovak Mathematical Journal 47.4 (1997): 749-768. <http://eudml.org/doc/30396>.

@article{Furusho1997,
author = {Furusho, Yasuhiro, Kusano, Takaŝi},
journal = {Czechoslovak Mathematical Journal},
keywords = {biharmonic equation in ; positive entire solutions; radial solutions},
language = {eng},
number = {4},
pages = {749-768},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb \{R\}^N$},
url = {http://eudml.org/doc/30396},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Furusho, Yasuhiro
AU - Kusano, Takaŝi
TI - A supersolution-subsolution method for nonlinear biharmonic equations in $\mathbb {R}^N$
JO - Czechoslovak Mathematical Journal
PY - 1997
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 47
IS - 4
SP - 749
EP - 768
LA - eng
KW - biharmonic equation in ; positive entire solutions; radial solutions
UR - http://eudml.org/doc/30396
ER -

References

top
  1. On bounded solutions of second order elliptic differential equations, J. Fac. Sci. Univ. Tokyo, Sect. I 11 (1964), 29–37. (1964) MR0171988
  2. Solvability and bifurcations of nonlinear equations, Longman, New York, 1992. (1992) MR1175397
  3. Solvability of nonlinear equations and boundary value problems, Reidel Publishing Company, Doudrecht-Boston-London, 1980. (1980) MR0620638
  4. Nonlinear differential equations, Elsevier, Amsterdam-Oxford-New York, 1980. (1980) MR0558764
  5. On decaying entire solutions of second order sublinear elliptic equations, Hiroshima Math. J. 14 (1984), 551–562. (1984) MR0772986
  6. Existence of positive entire solutions of weakly coupled semilinear elliptic systems, Proc. Royal Soc. Edinburgh Sect. A 120 (1992), 79–91. (1992) MR1149985
  7. 10.2969/jmsj/04630449, J. Math. Soc. Japan 46 (1994), 449–465. (1994) MR1276832DOI10.2969/jmsj/04630449
  8. Symmetric positive entire solutions for nonlinear biharmonic equations, Differentsial’nye Uravneniya 31(2) (1995), 296–311. (1995) MR1373791
  9. 10.4153/CJM-1988-056-3, Canad. J. Math. 40 (1988), 1281–1300. (1988) MR0990098DOI10.4153/CJM-1988-056-3
  10. 10.1512/iumj.1985.34.34004, Indiana Univ. Math. J. 34 (1985), 85–95. (1985) MR0773394DOI10.1512/iumj.1985.34.34004
  11. 10.1016/0022-247X(92)90216-Z, J. Math. Anal. Appl. 167 (1992), 414–428. (1992) MR1168598DOI10.1016/0022-247X(92)90216-Z
  12. 10.1512/iumj.1982.31.31040, Indiana Univ. Math. J. 31 (1982), 493–529. (1982) MR0662915DOI10.1512/iumj.1982.31.31040
  13. 10.1016/0022-0396(79)90032-9, J. Differential Equations 34 (1979), 482–495. (1979) MR0555323DOI10.1016/0022-0396(79)90032-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.