On Lipschitz conditions for ordinary differential equations in Fréchet spaces

Gerd Herzog

Czechoslovak Mathematical Journal (1998)

  • Volume: 48, Issue: 1, page 95-103
  • ISSN: 0011-4642

Abstract

top
We will give an existence and uniqueness theorem for ordinary differential equations in Fréchet spaces using Lipschitz conditions formulated with a generalized distance and row-finite matrices.

How to cite

top

Herzog, Gerd. "On Lipschitz conditions for ordinary differential equations in Fréchet spaces." Czechoslovak Mathematical Journal 48.1 (1998): 95-103. <http://eudml.org/doc/30405>.

@article{Herzog1998,
abstract = {We will give an existence and uniqueness theorem for ordinary differential equations in Fréchet spaces using Lipschitz conditions formulated with a generalized distance and row-finite matrices.},
author = {Herzog, Gerd},
journal = {Czechoslovak Mathematical Journal},
keywords = {ordinary differential equation; Fréchet space; existence theorem; uniqueness theorem},
language = {eng},
number = {1},
pages = {95-103},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Lipschitz conditions for ordinary differential equations in Fréchet spaces},
url = {http://eudml.org/doc/30405},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Herzog, Gerd
TI - On Lipschitz conditions for ordinary differential equations in Fréchet spaces
JO - Czechoslovak Mathematical Journal
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 48
IS - 1
SP - 95
EP - 103
AB - We will give an existence and uniqueness theorem for ordinary differential equations in Fréchet spaces using Lipschitz conditions formulated with a generalized distance and row-finite matrices.
LA - eng
KW - ordinary differential equation; Fréchet space; existence theorem; uniqueness theorem
UR - http://eudml.org/doc/30405
ER -

References

top
  1. Ordinary differential equations in Banach spaces, Lecture Notes in Mathematics 596, Springer, 1977. (1977) Zbl0361.34050MR0463601
  2. A generalized contraction-mapping principle and infinite systems of differential equations, Diff. Eqs. 26 (1990), 944–952. (1990) MR1074257
  3. Differential equations in linear topological spaces, Moscow Univ. Math. Bull. 24 (1969), 93–100. (1969) MR0254397
  4. Über gewöhnliche Differentialgleichungen in Frécheträumen, Dissertation, Univ. Karlsruhe, 1992. (1992) Zbl0832.34055
  5. On ordinary linear differential equations in J , Demonstratio Math. 28 (1995), 383–398. (1995) MR1346844
  6. On existence and uniqueness conditions for ordinary differential equations in Fréchet spaces, Studia Sci. Math. Hungar. 32 (1996), 367–375. (1996) Zbl0880.34066MR1432178
  7. 10.1007/BF01351175, Math. Ann. 181 (1969), 8–34. (1969) MR0262863DOI10.1007/BF01351175
  8. 10.1007/BF01163880, Math. Z. 188 (1984), 119–124. (1984) MR0767369DOI10.1007/BF01163880
  9. 10.1016/0362-546X(86)90109-4, Nonlinear Analysis 10 (1986), 1385–1390. (1986) Zbl0612.34056MR0869547DOI10.1016/0362-546X(86)90109-4
  10. Solvability of linear ordinary differential equations in locally convex spaces, Moscow Univ. Math. Bull. 35 (1980), 1–5. (1980) Zbl0461.34046MR0570579
  11. Sur les systèmes infinis d’équations différentielles ordinaires dans certains espaces de Fréchet, Dissertationes Math. CXV, 1974. (1974) 
  12. 10.1007/BF01186599, Math. Z. 66 (1956), 111–116. (1956) MR0083816DOI10.1007/BF01186599
  13. 10.1007/BF01594190, Math. Ann. 114 (1937), 493–505. (1937) Zbl0017.09901MR1513152DOI10.1007/BF01594190
  14. Spectral representation of linear transformations in  ω , Proc. Cambridge Philos. Soc. 47 (1951), 461–472. (1951) Zbl0042.12201MR0042615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.